Merge pull request #101 from GTBarkley/grant

work on principle ideal theorem
This commit is contained in:
GTBarkley 2023-06-16 15:14:54 -07:00 committed by GitHub
commit 8402ffe56b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -5,7 +5,7 @@ import Mathlib.Order.Height
import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Noetherian
import CommAlg.krull import CommAlg.krull
variable (R : Type _) [CommRing R] [IsNoetherianRing R] variable {R : Type _} [CommRing R] [IsNoetherianRing R]
lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R) lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R)
(h : ∀(p : PrimeSpectrum R), p < q → Ideal.height p ≤ n - 1) : Ideal.height q ≤ n := by (h : ∀(p : PrimeSpectrum R), p < q → Ideal.height p ≤ n - 1) : Ideal.height q ≤ n := by
@ -15,18 +15,18 @@ lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R)
theorem height_le_one_of_minimal_over_principle (p : PrimeSpectrum R) (x : R): theorem height_le_one_of_minimal_over_principle (p : PrimeSpectrum R) (x : R):
p ∈ minimals (· < ·) {p | x ∈ p.asIdeal} → Ideal.height p ≤ 1 := by p ∈ minimals (· < ·) {p | x ∈ p.asIdeal} → Ideal.height p ≤ 1 := by
intro h intro h
apply height_le_of_gt_height_lt _ p -- apply height_le_of_gt_height_lt _ p
intro q qlep -- intro q qlep
by_contra hcontr -- by_contra hcontr
push_neg at hcontr -- push_neg at hcontr
simp only [le_refl, tsub_eq_zero_of_le] at hcontr -- simp only [le_refl, tsub_eq_zero_of_le] at hcontr
sorry sorry
#check (_ : Ideal R) ^ (_ : ) #check (_ : Ideal R) ^ (_ : )
#synth Pow (Ideal R) () #synth Pow (Ideal R) ()
def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where def symbolicIdeal (Q : Ideal R) [hin : Q.IsPrime] (I : Ideal R) : Ideal R where
carrier := {r : R | ∃ s : R, s ∉ Q ∧ s * r ∈ I} carrier := {r : R | ∃ s : R, s ∉ Q ∧ s * r ∈ I}
zero_mem' := by zero_mem' := by
simp only [Set.mem_setOf_eq, mul_zero, Submodule.zero_mem, and_true] simp only [Set.mem_setOf_eq, mul_zero, Submodule.zero_mem, and_true]
@ -54,11 +54,22 @@ def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where
rw [←mul_assoc, mul_comm s, mul_assoc] rw [←mul_assoc, mul_comm s, mul_assoc]
exact Ideal.mul_mem_left _ _ hs2 exact Ideal.mul_mem_left _ _ hs2
theorem Noetherian.height_zero_iff_symbolicPower_eq [IsNoetherianRing R] (P : Ideal R) [P.IsPrime] :
(∃ n : , symbolicIdeal P (P ^ n) = symbolicIdeal P (P ^ n.succ)) ↔ Ideal.height ⟨P, inferInstance⟩ = 0 := sorry
theorem WF_interval_le_prime (I : Ideal R) (P : Ideal R) [P.IsPrime] theorem WF_interval_le_prime [IsNoetherianRing R] (I : Ideal R) (P : Ideal R) [P.IsPrime]
(h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ): (h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ):
WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry
-- theorem smul_sup_eq_smul_sup_of_le_smul_of_le_jacobson {I J : Ideal R} {N N' : Submodule R M}
-- (hN' : N'.FG) (hIJ : I ≤ jacobson J) (hNN : N ⊔ N' ≤ N ⊔ I • N') : N ⊔ I • N' = N ⊔ J • N' := sorry
lemma nakaka {N N' I P : Ideal R} [P.IsPrime] [IsNoetherianRing R]
(hIP : I ≤ P) (hN : N ≤ P) (hNN : N ⊔ N' ≤ N ⊔ I • N') : N ⊔ I • N' = N := sorry
lemma symbolicPower_one (Q : Ideal R) [Q.IsPrime] : symbolicIdeal Q (Q ^ 1) = Q := sorry
lemma symbolicPower_subset (Q : Ideal R) [Q.IsPrime] {n m : } (h : m ≤ n) : symbolicIdeal Q (Q ^ n) ≤ symbolicIdeal Q (Q ^ m) := sorry
protected lemma LocalRing.height_le_one_of_minimal_over_principle protected lemma LocalRing.height_le_one_of_minimal_over_principle
[LocalRing R] {x : R} [LocalRing R] {x : R}
(h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) : (h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) :
@ -68,6 +79,33 @@ protected lemma LocalRing.height_le_one_of_minimal_over_principle
-- rw [Ideal.lt_height_iff'] at hcont -- rw [Ideal.lt_height_iff'] at hcont
-- rcases hcont with ⟨c, hc1, hc2, hc3⟩ -- rcases hcont with ⟨c, hc1, hc2, hc3⟩
apply height_le_of_gt_height_lt apply height_le_of_gt_height_lt
intro p hp intro Q hQ
let I := Ideal.span {x}
sorry let P := (closedPoint R).asIdeal
have artint : WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := by
apply WF_interval_le_prime I P
intro J hJ hJPr
symm
apply eq_of_mem_minimals h
. exact ⟨hJPr, hJ.1⟩
. exact hJ.2
let fQ (n : ) : Ideal R := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n)
have : ∃ n, I ⊔ fQ n = I ⊔ fQ (n.succ) := sorry
simp only [le_refl, tsub_eq_zero_of_le, nonpos_iff_eq_zero]
apply (Noetherian.height_zero_iff_symbolicPower_eq _).mp
obtain ⟨n, hn⟩ := this
use n
have : fQ n.succ ⊔ I • fQ n = fQ n := sorry
show fQ n = fQ n.succ
rw [←this]
apply nakaka (P := P)-- (N := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n.succ)) (N' := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n)) (I := I) (P := P)
. exact h.1.2
. calc
_ ≤ fQ 1 := symbolicPower_subset Q.asIdeal (by show 1 ≤ n + 1; simp only [le_add_iff_nonneg_left, zero_le] : 1 ≤ n.succ)
_ = Q.asIdeal := symbolicPower_one _
_ ≤ P := le_of_lt hQ
. suffices fQ n = fQ n.succ ⊔ I • fQ n by
rw [←this, sup_eq_right.mpr]
exact symbolicPower_subset Q.asIdeal (by show _ ≤ n + 1; simp : n ≤ n.succ)
symm
assumption