mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 07:08:36 -06:00
proved principle ideal theorem mod sorries
This commit is contained in:
parent
fe9d9ab71f
commit
0c4558243c
1 changed files with 48 additions and 10 deletions
|
@ -5,7 +5,7 @@ import Mathlib.Order.Height
|
|||
import Mathlib.RingTheory.Noetherian
|
||||
import CommAlg.krull
|
||||
|
||||
variable (R : Type _) [CommRing R] [IsNoetherianRing R]
|
||||
variable {R : Type _} [CommRing R] [IsNoetherianRing R]
|
||||
|
||||
lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R)
|
||||
(h : ∀(p : PrimeSpectrum R), p < q → Ideal.height p ≤ n - 1) : Ideal.height q ≤ n := by
|
||||
|
@ -15,18 +15,18 @@ lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R)
|
|||
theorem height_le_one_of_minimal_over_principle (p : PrimeSpectrum R) (x : R):
|
||||
p ∈ minimals (· < ·) {p | x ∈ p.asIdeal} → Ideal.height p ≤ 1 := by
|
||||
intro h
|
||||
apply height_le_of_gt_height_lt _ p
|
||||
intro q qlep
|
||||
by_contra hcontr
|
||||
push_neg at hcontr
|
||||
simp only [le_refl, tsub_eq_zero_of_le] at hcontr
|
||||
-- apply height_le_of_gt_height_lt _ p
|
||||
-- intro q qlep
|
||||
-- by_contra hcontr
|
||||
-- push_neg at hcontr
|
||||
-- simp only [le_refl, tsub_eq_zero_of_le] at hcontr
|
||||
|
||||
sorry
|
||||
|
||||
#check (_ : Ideal R) ^ (_ : ℕ)
|
||||
#synth Pow (Ideal R) (ℕ)
|
||||
|
||||
def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where
|
||||
def symbolicIdeal (Q : Ideal R) [hin : Q.IsPrime] (I : Ideal R) : Ideal R where
|
||||
carrier := {r : R | ∃ s : R, s ∉ Q ∧ s * r ∈ I}
|
||||
zero_mem' := by
|
||||
simp only [Set.mem_setOf_eq, mul_zero, Submodule.zero_mem, and_true]
|
||||
|
@ -54,11 +54,22 @@ def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where
|
|||
rw [←mul_assoc, mul_comm s, mul_assoc]
|
||||
exact Ideal.mul_mem_left _ _ hs2
|
||||
|
||||
theorem Noetherian.height_zero_iff_symbolicPower_eq [IsNoetherianRing R] (P : Ideal R) [P.IsPrime] :
|
||||
(∃ n : ℕ, symbolicIdeal P (P ^ n) = symbolicIdeal P (P ^ n.succ)) ↔ Ideal.height ⟨P, inferInstance⟩ = 0 := sorry
|
||||
|
||||
theorem WF_interval_le_prime [IsNoetherianRing R] (I : Ideal R) (P : Ideal R) [P.IsPrime]
|
||||
(h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ):
|
||||
WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry
|
||||
|
||||
-- theorem smul_sup_eq_smul_sup_of_le_smul_of_le_jacobson {I J : Ideal R} {N N' : Submodule R M}
|
||||
-- (hN' : N'.FG) (hIJ : I ≤ jacobson J) (hNN : N ⊔ N' ≤ N ⊔ I • N') : N ⊔ I • N' = N ⊔ J • N' := sorry
|
||||
|
||||
lemma nakaka {N N' I P : Ideal R} [P.IsPrime] [IsNoetherianRing R]
|
||||
(hIP : I ≤ P) (hN : N ≤ P) (hNN : N ⊔ N' ≤ N ⊔ I • N') : N ⊔ I • N' = N := sorry
|
||||
|
||||
lemma symbolicPower_one (Q : Ideal R) [Q.IsPrime] : symbolicIdeal Q (Q ^ 1) = Q := sorry
|
||||
lemma symbolicPower_subset (Q : Ideal R) [Q.IsPrime] {n m : ℕ} (h : m ≤ n) : symbolicIdeal Q (Q ^ n) ≤ symbolicIdeal Q (Q ^ m) := sorry
|
||||
|
||||
protected lemma LocalRing.height_le_one_of_minimal_over_principle
|
||||
[LocalRing R] {x : R}
|
||||
(h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) :
|
||||
|
@ -68,6 +79,33 @@ protected lemma LocalRing.height_le_one_of_minimal_over_principle
|
|||
-- rw [Ideal.lt_height_iff'] at hcont
|
||||
-- rcases hcont with ⟨c, hc1, hc2, hc3⟩
|
||||
apply height_le_of_gt_height_lt
|
||||
intro p hp
|
||||
|
||||
sorry
|
||||
intro Q hQ
|
||||
let I := Ideal.span {x}
|
||||
let P := (closedPoint R).asIdeal
|
||||
have artint : WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := by
|
||||
apply WF_interval_le_prime I P
|
||||
intro J hJ hJPr
|
||||
symm
|
||||
apply eq_of_mem_minimals h
|
||||
. exact ⟨hJPr, hJ.1⟩
|
||||
. exact hJ.2
|
||||
let fQ (n : ℕ) : Ideal R := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n)
|
||||
have : ∃ n, I ⊔ fQ n = I ⊔ fQ (n.succ) := sorry
|
||||
simp only [le_refl, tsub_eq_zero_of_le, nonpos_iff_eq_zero]
|
||||
apply (Noetherian.height_zero_iff_symbolicPower_eq _).mp
|
||||
obtain ⟨n, hn⟩ := this
|
||||
use n
|
||||
have : fQ n.succ ⊔ I • fQ n = fQ n := sorry
|
||||
show fQ n = fQ n.succ
|
||||
rw [←this]
|
||||
apply nakaka (P := P)-- (N := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n.succ)) (N' := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n)) (I := I) (P := P)
|
||||
. exact h.1.2
|
||||
. calc
|
||||
_ ≤ fQ 1 := symbolicPower_subset Q.asIdeal (by show 1 ≤ n + 1; simp only [le_add_iff_nonneg_left, zero_le] : 1 ≤ n.succ)
|
||||
_ = Q.asIdeal := symbolicPower_one _
|
||||
_ ≤ P := le_of_lt hQ
|
||||
. suffices fQ n = fQ n.succ ⊔ I • fQ n by
|
||||
rw [←this, sup_eq_right.mpr]
|
||||
exact symbolicPower_subset Q.asIdeal (by show _ ≤ n + 1; simp : n ≤ n.succ)
|
||||
symm
|
||||
assumption
|
Loading…
Reference in a new issue