mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Ultimate version of HilbertFunction
This commit is contained in:
parent
f9e7942a60
commit
82a4ded17c
1 changed files with 39 additions and 4 deletions
|
@ -97,7 +97,21 @@ def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [Direc
|
||||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||||
|
|
||||||
|
|
||||||
end
|
instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] :
|
||||||
|
Algebra (𝒜 0) (⨁ i, 𝒜 i) :=
|
||||||
|
Algebra.ofModule'
|
||||||
|
(by
|
||||||
|
intro r x
|
||||||
|
sorry)
|
||||||
|
(by
|
||||||
|
intro r x
|
||||||
|
sorry)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class StandardGraded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||||||
|
gen_in_first_piece :
|
||||||
|
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
||||||
|
|
||||||
|
|
||||||
-- Each component of a graded ring is an additive subgroup
|
-- Each component of a graded ring is an additive subgroup
|
||||||
|
@ -106,6 +120,28 @@ def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
||||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := by
|
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry
|
||||||
|
|
||||||
|
|
||||||
|
def graded_submodule
|
||||||
|
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||||
|
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ )
|
||||||
|
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||||||
instance Quotient_of_graded_is_graded
|
instance Quotient_of_graded_is_graded
|
||||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
@ -114,7 +150,6 @@ instance Quotient_of_graded_is_graded
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- If A_0 is Artinian and local, then A is graded local
|
-- If A_0 is Artinian and local, then A is graded local
|
||||||
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
@ -131,8 +166,6 @@ lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → T
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 1.5.6 (b)(ii)]
|
-- @[BH, 1.5.6 (b)(ii)]
|
||||||
-- An associated prime of a graded R-Mod M is graded
|
-- An associated prime of a graded R-Mod M is graded
|
||||||
lemma Associated_prime_of_graded_is_graded
|
lemma Associated_prime_of_graded_is_graded
|
||||||
|
@ -149,6 +182,8 @@ lemma Associated_prime_of_graded_is_graded
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 4.1.3] when d ≥ 1
|
-- @[BH, 4.1.3] when d ≥ 1
|
||||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||||
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
|
Loading…
Reference in a new issue