comm_alg/HilbertFunction.lean
2023-06-14 21:30:17 -07:00

258 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Order.KrullDimension
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Ideal.AssociatedPrime
import Mathlib.RingTheory.Artinian
import Mathlib.Order.Height
-- Setting for "library_search"
set_option maxHeartbeats 0
macro "ls" : tactic => `(tactic|library_search)
-- New tactic "obviously"
macro "obviously" : tactic =>
`(tactic| (
first
| dsimp; simp; done; dbg_trace "it was dsimp simp"
| simp; done; dbg_trace "it was simp"
| tauto; done; dbg_trace "it was tauto"
| simp; tauto; done; dbg_trace "it was simp tauto"
| rfl; done; dbg_trace "it was rfl"
| norm_num; done; dbg_trace "it was norm_num"
| /-change (@Eq _ _);-/ linarith; done; dbg_trace "it was linarith"
-- | gcongr; done
| ring; done; dbg_trace "it was ring"
| trivial; done; dbg_trace "it was trivial"
-- | nlinarith; done
| fail "No, this is not obvious."))
open GradedMonoid.GSmul
open DirectSum
-- @Definitions (to be classified)
section
-- Definition of polynomail of type d
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
noncomputable def length ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < }
-- Make instance of M_i being an R_0-module
instance tada1 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMul (𝒜 0) (𝓜 i)
where smul x y := @Eq.rec (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
lemma mylem (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ) (a : 𝒜 0) (m : 𝓜 i) :
of _ _ (a • m) = of _ _ a • of _ _ m := by
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
refine' of_eq_of_gradedMonoid_eq _
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
instance tada2 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMulWithZero (𝒜 0) (𝓜 i) := by
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
instance tada3 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ): Module (𝒜 0) (𝓜 i) := by
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
-- Definition of a Hilbert function of a graded module
section
noncomputable def hilbert_function (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
noncomputable def dimensionring { A: Type _}
[CommRing A] := krullDim (PrimeSpectrum A)
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A (( : Submodule A M).annihilator)) )
end
-- Definition of homogeneous ideal
def Ideal.IsHomogeneous' (𝒜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : )
⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
-- Definition of homogeneous prime ideal
def HomogeneousPrime (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
-- Definition of homogeneous maximal ideal
def HomogeneousMax (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
--theorem monotone_stabilizes_iff_noetherian :
-- (∀ f : →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
instance {𝒜 : → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] :
Algebra (𝒜 0) (⨁ i, 𝒜 i) :=
Algebra.ofModule'
(by
intro r x
sorry)
(by
intro r x
sorry)
class StandardGraded {𝒜 : → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
gen_in_first_piece :
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = ( : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
-- Each component of a graded ring is an additive subgroup
def Component_of_graded_as_addsubgroup (𝒜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ) : AddSubgroup (𝒜 i) := by
sorry
def graded_morphism (𝒜 : → Type _) (𝓜 : → Type _) (𝓝 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry
def graded_submodule
(𝒜 : → Type _) (𝓜 : → Type u) (𝓝 : → Type u)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : )
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
sorry
end
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
instance Quotient_of_graded_is_graded
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
sorry
-- If A_0 is Artinian and local, then A is graded local
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := by
sorry
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
lemma Exist_chain_of_graded_submodules (𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
: ∃ (c : List (Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))), c.Chain' (· < ·) ∧ ∀ M ∈ c, Ture := by
sorry
-- @[BH, 1.5.6 (b)(ii)]
-- An associated prime of a graded R-Mod M is graded
lemma Associated_prime_of_graded_is_graded
(𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of _ i x}).annihilator)) := by
sorry
-- @[BH, 4.1.3] when d ≥ 1
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
theorem Hilbert_polynomial_d_ge_1 (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
(hilb : ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
: PolyType hilb (d - 1) := by
sorry
-- (reduced version) [BH, 4.1.3] when d ≥ 1
-- If M is a finite graed R-Mod of dimension d ≥ 1, and M = R 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) is of polynomial type (d - 1)
theorem Hilbert_polynomial_d_ge_1_reduced
(d : ) (d1 : 1 ≤ d)
(𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
(hilb : ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
(hm : 𝓜 = (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
: PolyType hilb (d - 1) := by
sorry
-- @[BH, 4.1.3] when d = 0
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
theorem Hilbert_polynomial_d_0 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
(hilb : ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
: (∃ (N : ), ∀ (n : ), n ≥ N → hilb n = 0) := by
sorry
-- (reduced version) [BH, 4.1.3] when d = 0
-- If M is a finite graed R-Mod of dimension zero, and M = R 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
theorem Hilbert_polynomial_d_0_reduced
(𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
(hilb : ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
(hm : 𝓜 = (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
: (∃ (N : ), ∀ (n : ), n ≥ N → hilb n = 0) := by
sorry