mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
proved krullDim_nonneg_of_nontrivial
This commit is contained in:
parent
53983475bb
commit
6a0a3768f8
1 changed files with 8 additions and 1 deletions
|
@ -73,7 +73,7 @@ height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀
|
||||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||||
have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n)
|
-- have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n)
|
||||||
constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩
|
constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩
|
||||||
. --rw [and_assoc]
|
. --rw [and_assoc]
|
||||||
-- show _ ∧ _ ∧ _
|
-- show _ ∧ _ ∧ _
|
||||||
|
@ -83,6 +83,11 @@ height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀
|
||||||
norm_cast at hc
|
norm_cast at hc
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||||
|
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||||
|
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||||
|
use k
|
||||||
|
|
||||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||||
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
||||||
sorry
|
sorry
|
||||||
|
@ -90,6 +95,8 @@ lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||||
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||||
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#check (sorry : False)
|
#check (sorry : False)
|
||||||
#check (sorryAx)
|
#check (sorryAx)
|
||||||
#check (4 : WithBot ℕ∞)
|
#check (4 : WithBot ℕ∞)
|
||||||
|
|
Loading…
Reference in a new issue