mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2025-01-13 15:23:47 -06:00
Merge pull request #31 from GTBarkley/sayantan
new: Working proof of dim_field_eq_zero
This commit is contained in:
commit
6496bc43d9
1 changed files with 67 additions and 0 deletions
67
CommAlg/sayantan.lean
Normal file
67
CommAlg/sayantan.lean
Normal file
|
@ -0,0 +1,67 @@
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
-- import Mathlib.Data.ENat.Lattice
|
||||||
|
-- import Mathlib.Order.OrderIsoNat
|
||||||
|
-- import Mathlib.Tactic.TFAE
|
||||||
|
|
||||||
|
namespace Ideal
|
||||||
|
|
||||||
|
-- def foo : List Nat := [1, 2, 3, 4, 5]
|
||||||
|
|
||||||
|
-- #check List.Chain'
|
||||||
|
|
||||||
|
-- example : List.Chain' (· < ·) foo := by
|
||||||
|
-- repeat { constructor; norm_num }
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
||||||
|
constructor
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
|
||||||
|
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||||
|
|
||||||
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||||
|
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
|
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
|
variable {K : Type _} [Field K]
|
||||||
|
|
||||||
|
lemma dim_field_eq_zero : krullDim K = 0 := by
|
||||||
|
have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||||
|
constructor
|
||||||
|
· intro primeP
|
||||||
|
obtain T := eq_bot_or_top P
|
||||||
|
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
||||||
|
tauto
|
||||||
|
· intro botP
|
||||||
|
rw [botP]
|
||||||
|
exact bot_prime
|
||||||
|
unfold krullDim
|
||||||
|
have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by
|
||||||
|
intro P
|
||||||
|
unfold height
|
||||||
|
simp
|
||||||
|
by_contra spec
|
||||||
|
change _ ≠ _ at spec
|
||||||
|
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||||
|
obtain ⟨J, JlP : J < P⟩ := spec
|
||||||
|
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||||||
|
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||||
|
rw [prime_bot] at P0 J0
|
||||||
|
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||||
|
have JeqP : J = P := PrimeSpectrum.ext J P this
|
||||||
|
have JneqP : J ≠ P := ne_of_lt JlP
|
||||||
|
contradiction
|
||||||
|
simp [height_zero]
|
Loading…
Reference in a new issue