From bbaf335924f1f71bf2bf911823687a4324d311bb Mon Sep 17 00:00:00 2001 From: SinTan1729 Date: Mon, 12 Jun 2023 16:06:48 -0700 Subject: [PATCH] new: Working proof of dim_field_eq_zero --- CommAlg/sayantan.lean | 67 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 67 insertions(+) create mode 100644 CommAlg/sayantan.lean diff --git a/CommAlg/sayantan.lean b/CommAlg/sayantan.lean new file mode 100644 index 0000000..553fa4f --- /dev/null +++ b/CommAlg/sayantan.lean @@ -0,0 +1,67 @@ +import Mathlib.RingTheory.Ideal.Basic +import Mathlib.Order.Height +import Mathlib.RingTheory.PrincipalIdealDomain +import Mathlib.RingTheory.DedekindDomain.Basic +import Mathlib.RingTheory.Ideal.Quotient +import Mathlib.RingTheory.Localization.AtPrime +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.Order.ConditionallyCompleteLattice.Basic +-- import Mathlib.Data.ENat.Lattice +-- import Mathlib.Order.OrderIsoNat +-- import Mathlib.Tactic.TFAE + +namespace Ideal + +-- def foo : List Nat := [1, 2, 3, 4, 5] + +-- #check List.Chain' + +-- example : List.Chain' (· < ·) foo := by +-- repeat { constructor; norm_num } + + + +example (x : Nat) : List.Chain' (· < ·) [x] := by + constructor + + + +variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) + +noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} + +noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I + +lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl +lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl +lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl + +variable {K : Type _} [Field K] + +lemma dim_field_eq_zero : krullDim K = 0 := by + have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by + constructor + · intro primeP + obtain T := eq_bot_or_top P + have : ¬P = ⊤ := IsPrime.ne_top primeP + tauto + · intro botP + rw [botP] + exact bot_prime + unfold krullDim + have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by + intro P + unfold height + simp + by_contra spec + change _ ≠ _ at spec + rw [← Set.nonempty_iff_ne_empty] at spec + obtain ⟨J, JlP : J < P⟩ := spec + have P0 : IsPrime P.asIdeal := P.IsPrime + have J0 : IsPrime J.asIdeal := J.IsPrime + rw [prime_bot] at P0 J0 + have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0) + have JeqP : J = P := PrimeSpectrum.ext J P this + have JneqP : J ≠ P := ne_of_lt JlP + contradiction + simp [height_zero]