Filled in proofs for Delta_1_

This commit is contained in:
Andre 2023-06-16 14:36:28 -04:00
parent 6421277092
commit 5f0bf3b066

View file

@ -66,13 +66,6 @@ end section
def Δ : () → → () def Δ : () → → ()
| f, 0 => f | f, 0 => f
| f, d + 1 => fun (n : ) ↦ (Δ f d) (n + 1) - (Δ f d) (n) | f, d + 1 => fun (n : ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
section
#check Δ
def f (n : ) := n
#eval (Δ f 1) 100
-- #check (by (show_term unfold Δ) : Δ f 0=0)
end section
-- (NO need to prove another direction) Constant polynomial function = constant function -- (NO need to prove another direction) Constant polynomial function = constant function
lemma Poly_constant (F : Polynomial ) (c : ) : lemma Poly_constant (F : Polynomial ) (c : ) :
@ -109,7 +102,6 @@ lemma Poly_shifting (f : ) (g : ) (hf : PolyType f d) (s :
sorry sorry
· rw [h2, s2] · rw [h2, s2]
-- PolyType 0 = constant function -- PolyType 0 = constant function
lemma PolyType_0 (f : ) : (PolyType f 0) ↔ (∃ (c : ), ∃ (N : ), (∀ (n : ), lemma PolyType_0 (f : ) : (PolyType f 0) ↔ (∃ (c : ), ∃ (N : ), (∀ (n : ),
(N ≤ n → f n = c)) ∧ c ≠ 0) := by (N ≤ n → f n = c)) ∧ c ≠ 0) := by
@ -142,12 +134,44 @@ lemma PolyType_0 (f : ) : (PolyType f 0) ↔ (∃ (c : ), ∃ (N :
lemma Δ_0 (f : ) : (Δ f 0) = f := by rfl lemma Δ_0 (f : ) : (Δ f 0) = f := by rfl
--simp only [Δ] --simp only [Δ]
-- Δ of 1 times decreaes the polynomial type by one -- Δ of 1 times decreaes the polynomial type by one
lemma Δ_1 (f : ) (d : ): PolyType f (d + 1) → PolyType (Δ f 1) d := by lemma Δ_1 (f : ) (d : ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
intro h
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
rcases h with ⟨F, N, h⟩
rcases h with ⟨h1, h2⟩
have this : ∃ (G : Polynomial ), (∀ (x : ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
exact Polynomial_shifting F 1
rcases this with ⟨G, hG, hGG⟩
let Poly := G - F
use Poly
constructor
· use N
intro n hn
specialize hG n
norm_num
rw [hG]
let h3 := h1
specialize h3 n
have this1 : f n = Polynomial.eval (n : ) F := by tauto
have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ) F := by
specialize h1 (n + 1)
have this3 : N ≤ n + 1 := by linarith
aesop
rw [←this1, ←this2]
· have this1 : Polynomial.degree Poly = d := by
have this2 : Polynomial.degree Poly ≤ d := by
sorry sorry
have this3 : Polynomial.degree Poly ≥ d := by
sorry
sorry
tauto
-- Δ of d times maps polynomial of degree d to polynomial of degree 0 -- Δ of d times maps polynomial of degree d to polynomial of degree 0
lemma Δ_1_s_equiv_Δ_s_1 (f : ) (s : ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by lemma Δ_1_s_equiv_Δ_s_1 (f : ) (s : ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
sorry induction' s with s hs
· norm_num
· aesop
lemma foofoo (d : ) : (f : ) → (PolyType f d) → (PolyType (Δ f d) 0):= by lemma foofoo (d : ) : (f : ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
induction' d with d hd induction' d with d hd
· intro f h · intro f h
@ -189,7 +213,6 @@ lemma foo (d : ) : (f : ) → (∃ (c : ), ∃ (N : ), (∀
have this : PolyType f (d + 1) := by have this : PolyType f (d + 1) := by
rcases h with ⟨H,c0⟩ rcases h with ⟨H,c0⟩
let g := (Δ f 1) let g := (Δ f 1)
-- let g := fun (x : ) => (f (x + 1) - f (x))
have this1 : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by have this1 : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
use c; use N use c; use N
constructor constructor
@ -204,7 +227,7 @@ lemma foo (d : ) : (f : ) → (∃ (c : ), ∃ (N : ), (∀
apply hd apply hd
tauto tauto
exact Δ_1_ f d this2 exact Δ_1_ f d this2
tauto exact this
-- [BH, 4.1.2] (a) => (b) -- [BH, 4.1.2] (a) => (b)
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d -- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d