From 5f0bf3b0663600901fb8ed44a09289106bdac92e Mon Sep 17 00:00:00 2001 From: Andre Date: Fri, 16 Jun 2023 14:36:28 -0400 Subject: [PATCH] Filled in proofs for Delta_1_ --- CommAlg/final_poly_type.lean | 49 ++++++++++++++++++++++++++---------- 1 file changed, 36 insertions(+), 13 deletions(-) diff --git a/CommAlg/final_poly_type.lean b/CommAlg/final_poly_type.lean index 1a7eb77..85b01a2 100644 --- a/CommAlg/final_poly_type.lean +++ b/CommAlg/final_poly_type.lean @@ -66,13 +66,6 @@ end section def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ) | f, 0 => f | f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n) -section - -#check Δ -def f (n : ℤ) := n -#eval (Δ f 1) 100 --- #check (by (show_term unfold Δ) : Δ f 0=0) -end section -- (NO need to prove another direction) Constant polynomial function = constant function lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : @@ -109,7 +102,6 @@ lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : sorry · rw [h2, s2] - -- PolyType 0 = constant function lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → f n = c)) ∧ c ≠ 0) := by @@ -142,12 +134,44 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl --simp only [Δ] -- Δ of 1 times decreaes the polynomial type by one -lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): PolyType f (d + 1) → PolyType (Δ f 1) d := by - sorry +lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by + intro h + simp only [PolyType, Δ, Int.cast_sub, exists_and_right] + rcases h with ⟨F, N, h⟩ + rcases h with ⟨h1, h2⟩ + have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by + exact Polynomial_shifting F 1 + rcases this with ⟨G, hG, hGG⟩ + let Poly := G - F + use Poly + constructor + · use N + intro n hn + specialize hG n + norm_num + rw [hG] + let h3 := h1 + specialize h3 n + have this1 : f n = Polynomial.eval (n : ℚ) F := by tauto + have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ℚ) F := by + specialize h1 (n + 1) + have this3 : N ≤ n + 1 := by linarith + aesop + rw [←this1, ←this2] + · have this1 : Polynomial.degree Poly = d := by + have this2 : Polynomial.degree Poly ≤ d := by + sorry + have this3 : Polynomial.degree Poly ≥ d := by + sorry + sorry + tauto -- Δ of d times maps polynomial of degree d to polynomial of degree 0 lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by - sorry + induction' s with s hs + · norm_num + · aesop + lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by induction' d with d hd · intro f h @@ -189,7 +213,6 @@ lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ have this : PolyType f (d + 1) := by rcases h with ⟨H,c0⟩ let g := (Δ f 1) - -- let g := fun (x : ℤ) => (f (x + 1) - f (x)) have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by use c; use N constructor @@ -204,7 +227,7 @@ lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ apply hd tauto exact Δ_1_ f d this2 - tauto + exact this -- [BH, 4.1.2] (a) => (b) -- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d