mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge pull request #73 from SinTan1729/main
Trying to break it down to smaller parts
This commit is contained in:
commit
5cebb2fa13
2 changed files with 39 additions and 18 deletions
|
@ -4,6 +4,7 @@ import Mathlib.Order.Height
|
|||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
|
@ -284,8 +285,12 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
|||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
||||
|
||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krullDim R + 1 = krullDim (Polynomial R) := sorry
|
||||
-- lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
-- krullDim R + 1 = krullDim (Polynomial R) := sorry
|
||||
|
||||
lemma krull_height_theorem [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) (S: Finset R)
|
||||
(h: P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S)) : height P ≤ S.card := by
|
||||
sorry
|
||||
|
||||
lemma dim_mvPolynomial [Field K] (n : ℕ) : krullDim (MvPolynomial (Fin n) K) = n := sorry
|
||||
|
||||
|
|
|
@ -8,38 +8,54 @@ import Mathlib.RingTheory.Localization.AtPrime
|
|||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import Mathlib.Data.Set.Ncard
|
||||
import CommAlg.krull
|
||||
|
||||
namespace Ideal
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
/--
|
||||
-- noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
-- noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
-- lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
-- lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
-- lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||
-- lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
-- krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||
|
||||
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
||||
-- lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
||||
|
||||
lemma primeIdeal_finite_height_of_noetherianRing [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) : height P ≠ ⊤ := by
|
||||
sorry
|
||||
-- lemma primeIdeal_finite_height_of_noetherianRing [Nontrivial R] [IsNoetherianRing R]
|
||||
-- (P: PrimeSpectrum R) : height P ≠ ⊤ := by
|
||||
-- sorry
|
||||
--/
|
||||
|
||||
lemma exist_elts_MinimalOver_of_primeIdeal_of_noetherianRing [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) :
|
||||
lemma exist_elts_MinimalOver_of_primeIdeal_of_noetherianRing [Nontrivial R] [IsNoetherianRing R]
|
||||
(P: PrimeSpectrum R) (h : height P < ⊤) :
|
||||
∃S : Set R, Set.ncard s = height P ∧ P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S) := by
|
||||
sorry
|
||||
|
||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
lemma dim_eq_dim_polynomial_add_one [h1: Nontrivial R] [IsNoetherianRing R] :
|
||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||
rw [le_antisymm_iff]
|
||||
constructor
|
||||
· exact dim_le_dim_polynomial_add_one
|
||||
· unfold krullDim
|
||||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||
· by_cases krullDim R = ⊤
|
||||
calc
|
||||
krullDim (Polynomial R) ≤ ⊤ := le_top
|
||||
_ ≤ krullDim R := top_le_iff.mpr h
|
||||
_ ≤ krullDim R + 1 := by
|
||||
apply le_of_eq
|
||||
rw [h]
|
||||
rfl
|
||||
have h:= Ne.lt_top h
|
||||
unfold krullDim
|
||||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞)
|
||||
≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||
intro P
|
||||
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||||
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
|
||||
|
@ -53,7 +69,6 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
|||
simp only [WithBot.coe_le_coe]
|
||||
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
|
||||
-- Prime avoidance is called subset_union_prime
|
||||
|
||||
sorry
|
||||
obtain ⟨I, h⟩ := this
|
||||
use I
|
||||
|
@ -62,7 +77,8 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
|||
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||
exact ge_trans this IP
|
||||
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1)
|
||||
≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||||
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
||||
apply iSup_le
|
||||
|
|
Loading…
Reference in a new issue