mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
commit
3078f0f8d9
1 changed files with 19 additions and 5 deletions
|
@ -55,6 +55,7 @@ lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
|||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||
|
||||
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||
apply le_antisymm
|
||||
. rw [krullDim_le_iff']
|
||||
|
@ -65,6 +66,8 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
|||
exact I.2.1
|
||||
. simp only [height_le_krullDim]
|
||||
|
||||
/-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭`
|
||||
with length `n + 1`. -/
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
|
@ -87,6 +90,7 @@ height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀
|
|||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
/-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
|
@ -96,9 +100,11 @@ height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain'
|
|||
#check height_le_krullDim
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
/-- The prime spectrum of the zero ring is empty. -/
|
||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||
|
||||
/-- A CommRing has empty prime spectrum if and only if it is the zero ring. -/
|
||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||
constructor
|
||||
. contrapose
|
||||
|
@ -122,17 +128,20 @@ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
|||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
/-- Nonzero rings have Krull dimension in ℕ∞ -/
|
||||
lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||
use k
|
||||
|
||||
/-- An ideal which is less than a prime is not a maximal ideal. -/
|
||||
lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h : p < q) : ¬IsMaximal p := by
|
||||
intro hp
|
||||
apply IsPrime.ne_top hq
|
||||
apply (IsCoatom.lt_iff hp.out).mp
|
||||
exact h
|
||||
|
||||
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
|
||||
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
||||
rw [krullDim_le_iff R 0]
|
||||
|
@ -168,6 +177,7 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
|||
apply not_maximal_of_lt_prime I.IsPrime
|
||||
exact hc2
|
||||
|
||||
/-- For a nonzero ring, Krull dimension is 0 if and only if all primes are maximal. -/
|
||||
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
rw [←dim_le_zero_iff]
|
||||
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
|
||||
|
@ -176,9 +186,10 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
|||
rw [←WithBot.coe_le_coe,←hn] at this
|
||||
change (0 : WithBot ℕ∞) ≤ _ at this
|
||||
constructor <;> intro h'
|
||||
rw [h']
|
||||
exact le_antisymm h' this
|
||||
. rw [h']
|
||||
. exact le_antisymm h' this
|
||||
|
||||
/-- In a field, the unique prime ideal is the zero ideal. -/
|
||||
@[simp]
|
||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||
constructor
|
||||
|
@ -190,6 +201,7 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
|
|||
rw [botP]
|
||||
exact bot_prime
|
||||
|
||||
/-- In a field, all primes have height 0. -/
|
||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||
unfold height
|
||||
simp
|
||||
|
@ -205,10 +217,12 @@ lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : heig
|
|||
have : J ≠ P := ne_of_lt JlP
|
||||
contradiction
|
||||
|
||||
/-- The Krull dimension of a field is 0. -/
|
||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
/-- A domain with Krull dimension 0 is a field. -/
|
||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
|
@ -230,6 +244,7 @@ lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim
|
|||
aesop
|
||||
contradiction
|
||||
|
||||
/-- A domain has Krull dimension 0 if and only if it is a field. -/
|
||||
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact domain_dim_zero.isField
|
||||
|
@ -259,10 +274,9 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
|||
change q0.asIdeal < q1.asIdeal at hc1
|
||||
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||||
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||
apply IsPrime.ne_top p.IsPrime
|
||||
apply (IsCoatom.lt_iff H.out).mp
|
||||
exact hc2
|
||||
exact (not_maximal_of_lt_prime p.IsPrime hc2) H
|
||||
|
||||
/-- The Krull dimension of a PID is at most 1. -/
|
||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
||||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
|
Loading…
Reference in a new issue