mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'GTBarkley:main' into main
This commit is contained in:
commit
5a463e00cc
4 changed files with 342 additions and 17 deletions
258
CommAlg/final_hil_pol.lean
Normal file
258
CommAlg/final_hil_pol.lean
Normal file
|
@ -0,0 +1,258 @@
|
|||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.Order.Height
|
||||
|
||||
|
||||
|
||||
-- Setting for "library_search"
|
||||
set_option maxHeartbeats 0
|
||||
macro "ls" : tactic => `(tactic|library_search)
|
||||
|
||||
-- New tactic "obviously"
|
||||
macro "obviously" : tactic =>
|
||||
`(tactic| (
|
||||
first
|
||||
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||||
| simp; done; dbg_trace "it was simp"
|
||||
| tauto; done; dbg_trace "it was tauto"
|
||||
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||||
| rfl; done; dbg_trace "it was rfl"
|
||||
| norm_num; done; dbg_trace "it was norm_num"
|
||||
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||||
-- | gcongr; done
|
||||
| ring; done; dbg_trace "it was ring"
|
||||
| trivial; done; dbg_trace "it was trivial"
|
||||
-- | nlinarith; done
|
||||
| fail "No, this is not obvious."))
|
||||
|
||||
|
||||
|
||||
open GradedMonoid.GSmul
|
||||
open DirectSum
|
||||
|
||||
|
||||
|
||||
-- @Definitions (to be classified)
|
||||
section
|
||||
|
||||
-- Definition of polynomail of type d
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||
noncomputable def length ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||
|
||||
-- Make instance of M_i being an R_0-module
|
||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||
|
||||
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
||||
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
||||
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
||||
refine' of_eq_of_gradedMonoid_eq _
|
||||
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
||||
|
||||
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
||||
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
||||
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
||||
|
||||
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
||||
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||||
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||||
|
||||
|
||||
-- Definition of a Hilbert function of a graded module
|
||||
section
|
||||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||
|
||||
noncomputable def dimensionring { A: Type _}
|
||||
[CommRing A] := krullDim (PrimeSpectrum A)
|
||||
|
||||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||
end
|
||||
|
||||
|
||||
|
||||
-- Definition of homogeneous ideal
|
||||
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ )
|
||||
⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
||||
|
||||
-- Definition of homogeneous prime ideal
|
||||
def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||
|
||||
-- Definition of homogeneous maximal ideal
|
||||
def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||
|
||||
--theorem monotone_stabilizes_iff_noetherian :
|
||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||
|
||||
|
||||
instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] :
|
||||
Algebra (𝒜 0) (⨁ i, 𝒜 i) :=
|
||||
Algebra.ofModule'
|
||||
(by
|
||||
intro r x
|
||||
sorry)
|
||||
(by
|
||||
intro r x
|
||||
sorry)
|
||||
|
||||
|
||||
|
||||
class StandardGraded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||||
gen_in_first_piece :
|
||||
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
||||
|
||||
|
||||
-- Each component of a graded ring is an additive subgroup
|
||||
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := by
|
||||
sorry
|
||||
|
||||
|
||||
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry
|
||||
|
||||
|
||||
def graded_submodule
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ )
|
||||
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
|
||||
sorry
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||||
instance Quotient_of_graded_is_graded
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- If A_0 is Artinian and local, then A is graded local
|
||||
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
||||
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
: ∃ (c : List (Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))), c.Chain' (· < ·) ∧ ∀ M ∈ c, Ture := by
|
||||
sorry
|
||||
|
||||
|
||||
-- @[BH, 1.5.6 (b)(ii)]
|
||||
-- An associated prime of a graded R-Mod M is graded
|
||||
lemma Associated_prime_of_graded_is_graded
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of _ i x}).annihilator)) := by
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- @[BH, 4.1.3] when d ≥ 1
|
||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||
: PolyType hilb (d - 1) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- (reduced version) [BH, 4.1.3] when d ≥ 1
|
||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||||
theorem Hilbert_polynomial_d_ge_1_reduced
|
||||
(d : ℕ) (d1 : 1 ≤ d)
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||
: PolyType hilb (d - 1) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- @[BH, 4.1.3] when d = 0
|
||||
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||
theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- (reduced version) [BH, 4.1.3] when d = 0
|
||||
-- If M is a finite graed R-Mod of dimension zero, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||
theorem Hilbert_polynomial_d_0_reduced
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -125,19 +125,23 @@ lemma Artinian_has_finite_max_ideal
|
|||
let m' : ℕ ↪ MaximalSpectrum R := Infinite.natEmbedding (MaximalSpectrum R)
|
||||
have m'inj := m'.injective
|
||||
let m'' : ℕ → Ideal R := fun n : ℕ ↦ ⨅ k ∈ range n, (m' k).asIdeal
|
||||
let f : ℕ → Ideal R := fun n : ℕ ↦ (m' n).asIdeal
|
||||
let F : Fin n → Ideal R := fun k ↦ (m' k).asIdeal
|
||||
have comaximal : ∀ i j : ℕ, i ≠ j → (m' i).asIdeal ⊔ (m' j).asIdeal =
|
||||
(⊤ : Ideal R) := by
|
||||
intro i j distinct
|
||||
apply Ideal.IsMaximal.coprime_of_ne
|
||||
sorry
|
||||
sorry
|
||||
-- by_contra equal
|
||||
exact (m' i).IsMaximal
|
||||
exact (m' j).IsMaximal
|
||||
have : (m' i) ≠ (m' j) := by
|
||||
exact Function.Injective.ne m'inj distinct
|
||||
intro h
|
||||
apply this
|
||||
exact MaximalSpectrum.ext _ _ h
|
||||
-- let g :`= Ideal.quotientInfRingEquivPiQuotient m' comaximal
|
||||
have ∀ n : ℕ, (R ⧸ ⨅ (i : Fin n), (F n) i) ≃+* ((i : Fin n) → R ⧸ (F n) i) := by
|
||||
sorry
|
||||
-- (let F : Fin n → Ideal R := fun k : Fin n ↦ (m' k).asIdeal)
|
||||
-- let g := Ideal.quotientInfRingEquivPiQuotient f comaximal
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
|
@ -193,7 +197,7 @@ lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|||
constructor
|
||||
apply finite_length_is_Noetherian
|
||||
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||||
sorry
|
||||
sorry -- can use Grant's lemma dim_eq_zero_iff
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -56,6 +56,7 @@ lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
|||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||
|
||||
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||
apply le_antisymm
|
||||
. rw [krullDim_le_iff']
|
||||
|
@ -66,6 +67,8 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
|||
exact I.2.1
|
||||
. simp only [height_le_krullDim]
|
||||
|
||||
/-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭`
|
||||
with length `n + 1`. -/
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
|
@ -88,6 +91,7 @@ height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀
|
|||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
/-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
|
@ -97,9 +101,11 @@ height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain'
|
|||
#check height_le_krullDim
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
/-- The prime spectrum of the zero ring is empty. -/
|
||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||
|
||||
/-- A CommRing has empty prime spectrum if and only if it is the zero ring. -/
|
||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||
constructor
|
||||
. contrapose
|
||||
|
@ -123,17 +129,20 @@ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
|||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
/-- Nonzero rings have Krull dimension in ℕ∞ -/
|
||||
lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||
use k
|
||||
|
||||
/-- An ideal which is less than a prime is not a maximal ideal. -/
|
||||
lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h : p < q) : ¬IsMaximal p := by
|
||||
intro hp
|
||||
apply IsPrime.ne_top hq
|
||||
apply (IsCoatom.lt_iff hp.out).mp
|
||||
exact h
|
||||
|
||||
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
|
||||
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
||||
rw [krullDim_le_iff R 0]
|
||||
|
@ -169,6 +178,7 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
|||
apply not_maximal_of_lt_prime I.IsPrime
|
||||
exact hc2
|
||||
|
||||
/-- For a nonzero ring, Krull dimension is 0 if and only if all primes are maximal. -/
|
||||
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
rw [←dim_le_zero_iff]
|
||||
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
|
||||
|
@ -177,9 +187,10 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
|||
rw [←WithBot.coe_le_coe,←hn] at this
|
||||
change (0 : WithBot ℕ∞) ≤ _ at this
|
||||
constructor <;> intro h'
|
||||
rw [h']
|
||||
exact le_antisymm h' this
|
||||
. rw [h']
|
||||
. exact le_antisymm h' this
|
||||
|
||||
/-- In a field, the unique prime ideal is the zero ideal. -/
|
||||
@[simp]
|
||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||
constructor
|
||||
|
@ -191,6 +202,7 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
|
|||
rw [botP]
|
||||
exact bot_prime
|
||||
|
||||
/-- In a field, all primes have height 0. -/
|
||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||
unfold height
|
||||
simp
|
||||
|
@ -206,10 +218,12 @@ lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : heig
|
|||
have : J ≠ P := ne_of_lt JlP
|
||||
contradiction
|
||||
|
||||
/-- The Krull dimension of a field is 0. -/
|
||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
/-- A domain with Krull dimension 0 is a field. -/
|
||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
|
@ -231,6 +245,7 @@ lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim
|
|||
aesop
|
||||
contradiction
|
||||
|
||||
/-- A domain has Krull dimension 0 if and only if it is a field. -/
|
||||
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact domain_dim_zero.isField
|
||||
|
@ -260,10 +275,9 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
|||
change q0.asIdeal < q1.asIdeal at hc1
|
||||
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||||
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||
apply IsPrime.ne_top p.IsPrime
|
||||
apply (IsCoatom.lt_iff H.out).mp
|
||||
exact hc2
|
||||
exact (not_maximal_of_lt_prime p.IsPrime hc2) H
|
||||
|
||||
/-- The Krull dimension of a PID is at most 1. -/
|
||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
||||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
|
|
@ -4,6 +4,18 @@ import Mathlib.Algebra.Module.GradedModule
|
|||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.Algebra.Algebra.Subalgebra.Basic
|
||||
import Mathlib.Algebra.Module.LinearMap
|
||||
|
||||
instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] :
|
||||
Algebra (𝒜 0) (⨁ i, 𝒜 i) :=
|
||||
Algebra.ofModule'
|
||||
(by
|
||||
intro r x
|
||||
sorry)
|
||||
(by
|
||||
intro r x
|
||||
sorry)
|
||||
|
||||
noncomputable def length ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||
|
@ -58,11 +70,11 @@ noncomputable def dimensionring { A: Type _}
|
|||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||
|
||||
-- (∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {x}).annihilator )
|
||||
|
||||
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
-- [DirectSum.GCommRing 𝒜]
|
||||
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||
|
||||
lemma graded_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||
|
||||
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||
|
@ -96,6 +108,43 @@ lemma Associated_prime_of_graded_is_graded
|
|||
sorry
|
||||
|
||||
|
||||
-- def standard_graded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (n : ℕ) :
|
||||
-- Prop :=
|
||||
-- ∃ J, Ideal.IsHomogeneous' 𝒜 J (J :Nonempty ((⨁ i, 𝒜 i) ≃+* (MvPolynomial (Fin n) (𝒜 0)) ⧸ J)
|
||||
class StandardGraded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||||
gen_in_first_piece :
|
||||
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
||||
|
||||
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := sorry
|
||||
|
||||
|
||||
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry
|
||||
|
||||
|
||||
def graded_submodule
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ )
|
||||
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
-- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||||
instance Quotient_of_graded_is_graded
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
theorem quotient_hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (p : Ideal (⨁ i, 𝒜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) = d) (hilb : ℤ → ℤ)
|
||||
(Hhilb: hilbert_function 𝒜 𝓜 hilb) (homprime: HomogeneousPrime 𝒜 p)
|
||||
: PolyType hilb (d - 1) := by
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue