mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge pull request #8 from GTBarkley/grant
add more mathlib refs to readme
This commit is contained in:
commit
59a056f82f
1 changed files with 12 additions and 5 deletions
17
README.md
17
README.md
|
@ -11,21 +11,28 @@ Feel free to add, modify, and expand this file. Below are starting points for th
|
||||||
def Mathlib.RingTheory.Ideal.Basic.Ideal (R : Type u) [Semiring R] := Submodule R R
|
def Mathlib.RingTheory.Ideal.Basic.Ideal (R : Type u) [Semiring R] := Submodule R R
|
||||||
```
|
```
|
||||||
|
|
||||||
- Definition of a Spec of a ring
|
- Definition of a Spec of a ring: `Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic.PrimeSpectrum`
|
||||||
|
|
||||||
- Definition of a Noetherian and Artinian rings
|
- Definition of a Noetherian and Artinian rings:
|
||||||
|
```lean
|
||||||
|
class Mathlib.RingTheory.Noetherian.IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop
|
||||||
|
```
|
||||||
|
|
||||||
- Definitions of a local ring and quotient ring
|
- Definitions of a local ring and quotient ring
|
||||||
|
|
||||||
- Definition of the chain of prime ideals and the length of these chains
|
- Definition of the chain of prime ideals and the length of these chains
|
||||||
|
|
||||||
- Definition of the Krull dimension (supremum of the lengh of chain of prime ideal)
|
- Definition of the Krull dimension (supremum of the lengh of chain of prime ideal): `Mathlib.Order.KrullDimension.krullDim`
|
||||||
|
|
||||||
|
- Definition of the height of prime ideal (dimension of A_p): `Mathlib.Order.KrullDimension.height`
|
||||||
|
|
||||||
- Definition of the height of prime ideal (dimension of A_p)
|
|
||||||
|
|
||||||
Give Examples of each of the above cases for a particular instances of ring
|
Give Examples of each of the above cases for a particular instances of ring
|
||||||
|
|
||||||
Theorem 0: Hilbert Basis Theorem
|
Theorem 0: Hilbert Basis Theorem:
|
||||||
|
```lean
|
||||||
|
instance isNoetherianRing [Finite σ] [IsNoetherianRing R] : IsNoetherianRing (MvPolynomial σ R)
|
||||||
|
```
|
||||||
|
|
||||||
Theorem 1: If A is a nonzero ring, then dim A[t] >= dim A +1
|
Theorem 1: If A is a nonzero ring, then dim A[t] >= dim A +1
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue