From c95b28d69cacbf61ac8307b9ff656113bd615d43 Mon Sep 17 00:00:00 2001 From: GTBarkley <67718465+GTBarkley@users.noreply.github.com> Date: Sat, 10 Jun 2023 18:19:33 -0400 Subject: [PATCH] add more mathlib refs to readme --- README.md | 17 ++++++++++++----- 1 file changed, 12 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 6a76379..d3e6216 100644 --- a/README.md +++ b/README.md @@ -11,21 +11,28 @@ Feel free to add, modify, and expand this file. Below are starting points for th def Mathlib.RingTheory.Ideal.Basic.Ideal (R : Type u) [Semiring R] := Submodule R R ``` -- Definition of a Spec of a ring +- Definition of a Spec of a ring: `Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic.PrimeSpectrum` -- Definition of a Noetherian and Artinian rings +- Definition of a Noetherian and Artinian rings: +```lean +class Mathlib.RingTheory.Noetherian.IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop +``` - Definitions of a local ring and quotient ring - Definition of the chain of prime ideals and the length of these chains -- Definition of the Krull dimension (supremum of the lengh of chain of prime ideal) +- Definition of the Krull dimension (supremum of the lengh of chain of prime ideal): `Mathlib.Order.KrullDimension.krullDim` + +- Definition of the height of prime ideal (dimension of A_p): `Mathlib.Order.KrullDimension.height` -- Definition of the height of prime ideal (dimension of A_p) Give Examples of each of the above cases for a particular instances of ring -Theorem 0: Hilbert Basis Theorem +Theorem 0: Hilbert Basis Theorem: +```lean +instance isNoetherianRing [Finite σ] [IsNoetherianRing R] : IsNoetherianRing (MvPolynomial σ R) +``` Theorem 1: If A is a nonzero ring, then dim A[t] >= dim A +1