quotient of a graded

This commit is contained in:
chelseaandmadrid 2023-06-14 13:44:23 -07:00
parent 06e0227828
commit 58140e01a9

View file

@ -52,7 +52,6 @@ macro "obviously" : tactic =>
-- @Definitions (to be classified)
section
open GradedMonoid.GSmul
@ -102,8 +101,13 @@ end
-- [DirectSum.GCommRing 𝒜]
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
-- Definition(s) of homogeneous ideals
def Ideal.IsHomogeneous' (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
def Ideal.IsHomogeneous' (𝒜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : )
⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
def HomogeneousPrime (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
def HomogeneousMax (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
@ -172,7 +176,7 @@ lemma Associated_prime_of_graded_is_graded
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
: Ideal.IsHomogeneous' 𝒜 p := by
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of _ i x}).annihilator)) := by
sorry
@ -183,18 +187,24 @@ lemma Associated_prime_of_graded_is_graded
-- sorry
instance sdfasdf
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
: ∀ i, AddCommGroup (p i) := by
sorry
-- instance sdfasdf
-- (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
-- (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
-- : ∀ i, AddCommGroup (p i) := by
-- sorry
def Component_of_graded_as_addsubgroup (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ) : AddSubgroup (𝒜 i) := sorry
-- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
instance Quotient_of_graded_is_graded
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
: Gmodule (⨁ i, 𝒜 i) (⨁ i, (𝒜 i)(p i)) := by
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
sorry
-- @Graded submodule