mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
proved dim_eq_zero_iff
This commit is contained in:
parent
3c4cfeab65
commit
4690889149
1 changed files with 10 additions and 5 deletions
|
@ -169,11 +169,16 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
||||||
exact hc2
|
exact hc2
|
||||||
|
|
||||||
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||||
constructor <;> intro h
|
rw [←dim_le_zero_iff]
|
||||||
. intro I
|
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
|
||||||
sorry
|
have : n ≥ 0 := zero_le n
|
||||||
. sorry
|
change _ ≤ _ at this
|
||||||
|
rw [←WithBot.coe_le_coe,←hn] at this
|
||||||
|
change (0 : WithBot ℕ∞) ≤ _ at this
|
||||||
|
constructor <;> intro h'
|
||||||
|
rw [h']
|
||||||
|
exact le_antisymm h' this
|
||||||
|
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||||
constructor
|
constructor
|
||||||
|
|
Loading…
Reference in a new issue