mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 07:08:36 -06:00
proved dim_le_zero_iff
This commit is contained in:
parent
7173aefe8d
commit
3c4cfeab65
2 changed files with 111 additions and 28 deletions
|
@ -171,6 +171,48 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 :
|
|||
apply (IsCoatom.lt_iff H.out).mp
|
||||
exact hc2
|
||||
--refine Iff.mp radical_eq_top (?_ (id (Eq.symm hc3)))
|
||||
|
||||
lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h : p < q) : ¬IsMaximal p := by
|
||||
intro hp
|
||||
apply IsPrime.ne_top hq
|
||||
apply (IsCoatom.lt_iff hp.out).mp
|
||||
exact h
|
||||
|
||||
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
||||
rw [krullDim_le_iff R 0]
|
||||
constructor <;> intro h I
|
||||
. contrapose! h
|
||||
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
|
||||
let 𝔪p := (⟨𝔪, IsMaximal.isPrime h𝔪.1⟩ : PrimeSpectrum R)
|
||||
have hstrct : I < 𝔪p := by
|
||||
apply lt_of_le_of_ne h𝔪.2
|
||||
intro hcontr
|
||||
rw [hcontr] at h
|
||||
exact h h𝔪.1
|
||||
use 𝔪p
|
||||
show (_ : WithBot ℕ∞) > (0 : ℕ∞)
|
||||
rw [_root_.lt_height_iff'']
|
||||
use [I]
|
||||
constructor
|
||||
. exact List.chain'_singleton _
|
||||
. constructor
|
||||
. intro I' hI'
|
||||
simp at hI'
|
||||
rwa [hI']
|
||||
. simp
|
||||
. contrapose! h
|
||||
change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h
|
||||
rw [_root_.lt_height_iff''] at h
|
||||
obtain ⟨c, _, hc2, hc3⟩ := h
|
||||
norm_cast at hc3
|
||||
rw [List.length_eq_one] at hc3
|
||||
obtain ⟨𝔮, h𝔮⟩ := hc3
|
||||
use 𝔮
|
||||
specialize hc2 𝔮 (h𝔮 ▸ (List.mem_singleton.mpr rfl))
|
||||
apply not_maximal_of_lt_prime _ I.IsPrime
|
||||
exact hc2
|
||||
|
||||
end Krull
|
||||
|
||||
section iSupWithBot
|
||||
|
|
|
@ -65,6 +65,34 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
|||
exact I.2.1
|
||||
. simp
|
||||
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
. constructor <;> intro h <;> exfalso
|
||||
. exact (not_le.mpr h) le_top
|
||||
. tauto
|
||||
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
||||
. tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
rw [WithBot.coe_lt_coe]
|
||||
exact lt_height_iff'
|
||||
|
||||
#check height_le_krullDim
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
|
@ -99,6 +127,47 @@ lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] :
|
|||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||
use k
|
||||
|
||||
lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h : p < q) : ¬IsMaximal p := by
|
||||
intro hp
|
||||
apply IsPrime.ne_top hq
|
||||
apply (IsCoatom.lt_iff hp.out).mp
|
||||
exact h
|
||||
|
||||
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
||||
rw [krullDim_le_iff R 0]
|
||||
constructor <;> intro h I
|
||||
. contrapose! h
|
||||
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
|
||||
let 𝔪p := (⟨𝔪, IsMaximal.isPrime h𝔪.1⟩ : PrimeSpectrum R)
|
||||
have hstrct : I < 𝔪p := by
|
||||
apply lt_of_le_of_ne h𝔪.2
|
||||
intro hcontr
|
||||
rw [hcontr] at h
|
||||
exact h h𝔪.1
|
||||
use 𝔪p
|
||||
show (_ : WithBot ℕ∞) > (0 : ℕ∞)
|
||||
rw [lt_height_iff'']
|
||||
use [I]
|
||||
constructor
|
||||
. exact List.chain'_singleton _
|
||||
. constructor
|
||||
. intro I' hI'
|
||||
simp at hI'
|
||||
rwa [hI']
|
||||
. simp
|
||||
. contrapose! h
|
||||
change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h
|
||||
rw [lt_height_iff''] at h
|
||||
obtain ⟨c, _, hc2, hc3⟩ := h
|
||||
norm_cast at hc3
|
||||
rw [List.length_eq_one] at hc3
|
||||
obtain ⟨𝔮, h𝔮⟩ := hc3
|
||||
use 𝔮
|
||||
specialize hc2 𝔮 (h𝔮 ▸ (List.mem_singleton.mpr rfl))
|
||||
apply not_maximal_of_lt_prime I.IsPrime
|
||||
exact hc2
|
||||
|
||||
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
constructor <;> intro h
|
||||
. intro I
|
||||
|
@ -167,34 +236,6 @@ lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D =
|
|||
-- This lemma is false!
|
||||
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
. constructor <;> intro h <;> exfalso
|
||||
. exact (not_le.mpr h) le_top
|
||||
. tauto
|
||||
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
||||
. tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
rw [WithBot.coe_lt_coe]
|
||||
exact lt_height_iff'
|
||||
|
||||
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
|
||||
applies only to dimension zero rings and domains of dimension 1. -/
|
||||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
||||
|
|
Loading…
Reference in a new issue