mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Rename the file
This commit is contained in:
parent
75cc002bef
commit
41105f8623
2 changed files with 325 additions and 0 deletions
325
CommAlg/final_poly_type.lean
Normal file
325
CommAlg/final_poly_type.lean
Normal file
|
@ -0,0 +1,325 @@
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
|
||||||
|
-- Setting for "library_search"
|
||||||
|
set_option maxHeartbeats 0
|
||||||
|
macro "ls" : tactic => `(tactic|library_search)
|
||||||
|
|
||||||
|
-- New tactic "obviously"
|
||||||
|
macro "obviously" : tactic =>
|
||||||
|
`(tactic| (
|
||||||
|
first
|
||||||
|
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||||||
|
| simp; done; dbg_trace "it was simp"
|
||||||
|
| tauto; done; dbg_trace "it was tauto"
|
||||||
|
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||||||
|
| rfl; done; dbg_trace "it was rfl"
|
||||||
|
| norm_num; done; dbg_trace "it was norm_num"
|
||||||
|
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||||||
|
-- | gcongr; done
|
||||||
|
| ring; done; dbg_trace "it was ring"
|
||||||
|
| trivial; done; dbg_trace "it was trivial"
|
||||||
|
-- | nlinarith; done
|
||||||
|
| fail "No, this is not obvious."))
|
||||||
|
|
||||||
|
|
||||||
|
-- Testing of Polynomial
|
||||||
|
section Polynomial
|
||||||
|
noncomputable section
|
||||||
|
#check Polynomial
|
||||||
|
#check Polynomial (ℚ)
|
||||||
|
#check Polynomial.eval
|
||||||
|
|
||||||
|
|
||||||
|
example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by
|
||||||
|
have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by
|
||||||
|
sorry
|
||||||
|
obviously
|
||||||
|
|
||||||
|
-- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by
|
||||||
|
-- sorry
|
||||||
|
|
||||||
|
-- degree of a constant function is ⊥ (is this same as -1 ???)
|
||||||
|
#print Polynomial.degree_zero
|
||||||
|
|
||||||
|
def F : Polynomial ℚ := Polynomial.C (2 : ℚ)
|
||||||
|
#print F
|
||||||
|
#check F
|
||||||
|
#check Polynomial.degree F
|
||||||
|
#check Polynomial.degree 0
|
||||||
|
#check WithBot ℕ
|
||||||
|
-- #eval Polynomial.degree F
|
||||||
|
#check Polynomial.eval 1 F
|
||||||
|
example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by
|
||||||
|
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_
|
||||||
|
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||||
|
rw [F]
|
||||||
|
simp
|
||||||
|
|
||||||
|
-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ
|
||||||
|
#check CoeFun
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
end section
|
||||||
|
|
||||||
|
|
||||||
|
-- @[BH, 4.1.2]
|
||||||
|
-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ
|
||||||
|
noncomputable section
|
||||||
|
-- Polynomial type of degree d
|
||||||
|
@[simp]
|
||||||
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||||
|
section
|
||||||
|
-- structure PolyType (f : ℤ → ℤ) where
|
||||||
|
-- Poly : Polynomial ℤ
|
||||||
|
-- d :
|
||||||
|
-- N : ℤ
|
||||||
|
-- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly
|
||||||
|
|
||||||
|
#check PolyType
|
||||||
|
|
||||||
|
example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
|
||||||
|
unfold PolyType
|
||||||
|
sorry
|
||||||
|
-- use Polynomial.monomial (2 : ℤ) (1 : ℤ)
|
||||||
|
-- have' := hf 0; ring_nf at this
|
||||||
|
-- exact this
|
||||||
|
|
||||||
|
end section
|
||||||
|
|
||||||
|
-- Δ operator (of d times)
|
||||||
|
@[simp]
|
||||||
|
def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
||||||
|
| f, 0 => f
|
||||||
|
| f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
|
||||||
|
section
|
||||||
|
-- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n
|
||||||
|
-- def add' : ℕ → ℕ → ℕ
|
||||||
|
-- | 0, m => m
|
||||||
|
-- | n+1, m => (add' n m) + 1
|
||||||
|
-- #eval add' 5 10
|
||||||
|
#check Δ
|
||||||
|
def f (n : ℤ) := n
|
||||||
|
#eval (Δ f 1) 100
|
||||||
|
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
||||||
|
end section
|
||||||
|
|
||||||
|
|
||||||
|
-- (NO NEED TO PROVE) Constant polynomial function = constant function
|
||||||
|
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
|
(F = Polynomial.C c) ↔ (∀ r : ℚ, (Polynomial.eval r F) = c) := by
|
||||||
|
constructor
|
||||||
|
· intro h
|
||||||
|
rintro r
|
||||||
|
refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_
|
||||||
|
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||||
|
rw [h]
|
||||||
|
simp
|
||||||
|
· sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- Shifting doesn't change the polynomial type
|
||||||
|
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||||||
|
simp only [PolyType]
|
||||||
|
rcases hf with ⟨F, hh⟩
|
||||||
|
rcases hh with ⟨N,ss⟩
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- set_option pp.all true in
|
||||||
|
-- PolyType 0 = constant function
|
||||||
|
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ c ≠ 0) := by
|
||||||
|
constructor
|
||||||
|
· intro h
|
||||||
|
rcases h with ⟨Poly, hN⟩
|
||||||
|
rcases hN with ⟨N, hh⟩
|
||||||
|
have H1 := λ n hn => (hh n hn).left
|
||||||
|
have H2 := λ n hn => (hh n hn).right
|
||||||
|
clear hh
|
||||||
|
specialize H2 (N + 1)
|
||||||
|
have this1 : Polynomial.degree Poly = 0 := by
|
||||||
|
have : N ≤ N + 1 := by
|
||||||
|
norm_num
|
||||||
|
tauto
|
||||||
|
have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by
|
||||||
|
have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := by
|
||||||
|
use Poly.coeff 0
|
||||||
|
apply Polynomial.eq_C_of_degree_eq_zero
|
||||||
|
exact this1
|
||||||
|
cases' HH with c HHH
|
||||||
|
have HHHH : ∃ (d : ℤ), d = c := by
|
||||||
|
have H3 := (Poly_constant Poly c).mp HHH N
|
||||||
|
have H4 := H1 N (le_refl N)
|
||||||
|
rw[H3] at H4
|
||||||
|
exact ⟨f N, H4⟩
|
||||||
|
cases' HHHH with d H5
|
||||||
|
use d
|
||||||
|
rw [H5]
|
||||||
|
exact HHH
|
||||||
|
rcases this2 with ⟨c, hthis2⟩
|
||||||
|
use c
|
||||||
|
use N
|
||||||
|
intro n
|
||||||
|
specialize H1 n
|
||||||
|
constructor
|
||||||
|
· intro HH1
|
||||||
|
-- have H6 := H1 HH1
|
||||||
|
--
|
||||||
|
have this3 : f n = Polynomial.eval (n : ℚ) Poly := by
|
||||||
|
tauto
|
||||||
|
have this4 : Polynomial.eval (n : ℚ) Poly = c := by
|
||||||
|
rw [hthis2]
|
||||||
|
simp
|
||||||
|
have this5 : f n = (c : ℚ) := by
|
||||||
|
rw [←this4, this3]
|
||||||
|
exact Iff.mp (Rat.coe_int_inj (f n) c) this5
|
||||||
|
--
|
||||||
|
|
||||||
|
· intro c0
|
||||||
|
have H7 := H2 (by norm_num)
|
||||||
|
rw [hthis2] at this1
|
||||||
|
rw [c0] at this1
|
||||||
|
simp at this1
|
||||||
|
--
|
||||||
|
|
||||||
|
|
||||||
|
· intro h
|
||||||
|
rcases h with ⟨c, N, aaa⟩
|
||||||
|
let (Poly : Polynomial ℚ) := Polynomial.C (c : ℚ)
|
||||||
|
use Poly
|
||||||
|
use N
|
||||||
|
intro n Nn
|
||||||
|
specialize aaa n
|
||||||
|
have this1 : c ≠ 0 → f n = c := by
|
||||||
|
tauto
|
||||||
|
constructor
|
||||||
|
· sorry
|
||||||
|
· sorry
|
||||||
|
-- apply Polynomial.degree_C c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- Δ of 0 times preserve the function
|
||||||
|
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by
|
||||||
|
tauto
|
||||||
|
|
||||||
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
|
lemma Δ_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by
|
||||||
|
intro h
|
||||||
|
rcases h with ⟨Poly, hN⟩
|
||||||
|
rcases hN with ⟨N, hh⟩
|
||||||
|
have H1 := λ n hn => (hh n hn).left
|
||||||
|
have H2 := λ n hn => (hh n hn).right
|
||||||
|
clear hh
|
||||||
|
have HH2 : d = Polynomial.degree Poly := by
|
||||||
|
sorry
|
||||||
|
induction' d with d hd
|
||||||
|
· rw [PolyType_0]
|
||||||
|
sorry
|
||||||
|
· sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- [BH, 4.1.2] (a) => (b)
|
||||||
|
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||||
|
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) → PolyType f d := by
|
||||||
|
intro h
|
||||||
|
rcases h with ⟨c, N, hh⟩
|
||||||
|
have H1 := λ n => (hh n).left
|
||||||
|
have H2 := λ n => (hh n).right
|
||||||
|
clear hh
|
||||||
|
have H2 : c ≠ 0 := by
|
||||||
|
tauto
|
||||||
|
induction' d with d hd
|
||||||
|
· rw [PolyType_0]
|
||||||
|
use c
|
||||||
|
use N
|
||||||
|
tauto
|
||||||
|
· sorry
|
||||||
|
|
||||||
|
-- [BH, 4.1.2] (a) <= (b)
|
||||||
|
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||||
|
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) := by
|
||||||
|
intro h
|
||||||
|
have : PolyType (Δ f d) 0 := by
|
||||||
|
apply Δ_PolyType_d_to_PolyType_0
|
||||||
|
exact h
|
||||||
|
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) n = c) ∧ c ≠ 0)) := by
|
||||||
|
rw [←PolyType_0]
|
||||||
|
exact this
|
||||||
|
exact this1
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- @Additive lemma of length for a SES
|
||||||
|
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
||||||
|
section
|
||||||
|
-- variable {R M N : Type _} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
|
||||||
|
-- (f : M →[R] N)
|
||||||
|
open LinearMap
|
||||||
|
-- variable {R M : Type _} [CommRing R] [AddCommGroup M] [Module R M]
|
||||||
|
-- noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||||
|
|
||||||
|
|
||||||
|
-- Definitiion of the length of a module
|
||||||
|
noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||||
|
#check length ℤ ℤ
|
||||||
|
-- #eval length ℤ ℤ
|
||||||
|
|
||||||
|
|
||||||
|
-- @[ext]
|
||||||
|
-- structure SES (R : Type _) [CommRing R] where
|
||||||
|
-- A : Type _
|
||||||
|
-- B : Type _
|
||||||
|
-- C : Type _
|
||||||
|
-- f : A →ₗ[R] B
|
||||||
|
-- g : B →ₗ[R] C
|
||||||
|
-- left_exact : LinearMap.ker f = 0
|
||||||
|
-- middle_exact : LinearMap.range f = LinearMap.ker g
|
||||||
|
-- right_exact : LinearMap.range g = C
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- Definition of a SES (Short Exact Sequence)
|
||||||
|
-- @[ext]
|
||||||
|
structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B]
|
||||||
|
[AddCommGroup C] [Module R A] [Module R B] [Module R C]
|
||||||
|
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
|
||||||
|
where
|
||||||
|
left_exact : LinearMap.ker f = ⊥
|
||||||
|
middle_exact : LinearMap.range f = LinearMap.ker g
|
||||||
|
right_exact : LinearMap.range g = ⊤
|
||||||
|
|
||||||
|
#check SES.right_exact
|
||||||
|
#check SES
|
||||||
|
|
||||||
|
|
||||||
|
-- Additive lemma
|
||||||
|
lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C]
|
||||||
|
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
|
||||||
|
: (SES f g) → ((length R A) + (length R C) = (length R B)) := by
|
||||||
|
intro h
|
||||||
|
rcases h with ⟨left_exact, middle_exact, right_exact⟩
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end section
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue