diff --git a/CommAlg/PolyTEST.lean b/CommAlg/PolyTEST.lean deleted file mode 100644 index e69de29..0000000 diff --git a/CommAlg/final_poly_type.lean b/CommAlg/final_poly_type.lean new file mode 100644 index 0000000..c62acf3 --- /dev/null +++ b/CommAlg/final_poly_type.lean @@ -0,0 +1,325 @@ +import Mathlib.Order.Height +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic + +-- Setting for "library_search" +set_option maxHeartbeats 0 +macro "ls" : tactic => `(tactic|library_search) + +-- New tactic "obviously" +macro "obviously" : tactic => + `(tactic| ( + first + | dsimp; simp; done; dbg_trace "it was dsimp simp" + | simp; done; dbg_trace "it was simp" + | tauto; done; dbg_trace "it was tauto" + | simp; tauto; done; dbg_trace "it was simp tauto" + | rfl; done; dbg_trace "it was rfl" + | norm_num; done; dbg_trace "it was norm_num" + | /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith" + -- | gcongr; done + | ring; done; dbg_trace "it was ring" + | trivial; done; dbg_trace "it was trivial" + -- | nlinarith; done + | fail "No, this is not obvious.")) + + +-- Testing of Polynomial +section Polynomial +noncomputable section +#check Polynomial +#check Polynomial (ℚ) +#check Polynomial.eval + + +example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by + have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by + sorry + obviously + +-- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by +-- sorry + +-- degree of a constant function is ⊥ (is this same as -1 ???) +#print Polynomial.degree_zero + +def F : Polynomial ℚ := Polynomial.C (2 : ℚ) +#print F +#check F +#check Polynomial.degree F +#check Polynomial.degree 0 +#check WithBot ℕ +-- #eval Polynomial.degree F +#check Polynomial.eval 1 F +example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by + refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_ + simp only [Rat.ofNat_num, Rat.ofNat_den] + rw [F] + simp + +-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ +#check CoeFun + + + + +end section + + +-- @[BH, 4.1.2] +-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ +noncomputable section +-- Polynomial type of degree d +@[simp] +def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly +section +-- structure PolyType (f : ℤ → ℤ) where +-- Poly : Polynomial ℤ +-- d : +-- N : ℤ +-- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly + +#check PolyType + +example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by + unfold PolyType + sorry + -- use Polynomial.monomial (2 : ℤ) (1 : ℤ) + -- have' := hf 0; ring_nf at this + -- exact this + +end section + +-- Δ operator (of d times) +@[simp] +def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ) + | f, 0 => f + | f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n) +section +-- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n +-- def add' : ℕ → ℕ → ℕ +-- | 0, m => m +-- | n+1, m => (add' n m) + 1 +-- #eval add' 5 10 +#check Δ +def f (n : ℤ) := n +#eval (Δ f 1) 100 +-- #check (by (show_term unfold Δ) : Δ f 0=0) +end section + + +-- (NO NEED TO PROVE) Constant polynomial function = constant function +lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : + (F = Polynomial.C c) ↔ (∀ r : ℚ, (Polynomial.eval r F) = c) := by + constructor + · intro h + rintro r + refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_ + simp only [Rat.ofNat_num, Rat.ofNat_den] + rw [h] + simp + · sorry + + + + +-- Shifting doesn't change the polynomial type +lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by + simp only [PolyType] + rcases hf with ⟨F, hh⟩ + rcases hh with ⟨N,ss⟩ + sorry + + + + +-- set_option pp.all true in +-- PolyType 0 = constant function +lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ c ≠ 0) := by + constructor + · intro h + rcases h with ⟨Poly, hN⟩ + rcases hN with ⟨N, hh⟩ + have H1 := λ n hn => (hh n hn).left + have H2 := λ n hn => (hh n hn).right + clear hh + specialize H2 (N + 1) + have this1 : Polynomial.degree Poly = 0 := by + have : N ≤ N + 1 := by + norm_num + tauto + have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by + have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := by + use Poly.coeff 0 + apply Polynomial.eq_C_of_degree_eq_zero + exact this1 + cases' HH with c HHH + have HHHH : ∃ (d : ℤ), d = c := by + have H3 := (Poly_constant Poly c).mp HHH N + have H4 := H1 N (le_refl N) + rw[H3] at H4 + exact ⟨f N, H4⟩ + cases' HHHH with d H5 + use d + rw [H5] + exact HHH + rcases this2 with ⟨c, hthis2⟩ + use c + use N + intro n + specialize H1 n + constructor + · intro HH1 + -- have H6 := H1 HH1 + -- + have this3 : f n = Polynomial.eval (n : ℚ) Poly := by + tauto + have this4 : Polynomial.eval (n : ℚ) Poly = c := by + rw [hthis2] + simp + have this5 : f n = (c : ℚ) := by + rw [←this4, this3] + exact Iff.mp (Rat.coe_int_inj (f n) c) this5 + -- + + · intro c0 + have H7 := H2 (by norm_num) + rw [hthis2] at this1 + rw [c0] at this1 + simp at this1 + -- + + + · intro h + rcases h with ⟨c, N, aaa⟩ + let (Poly : Polynomial ℚ) := Polynomial.C (c : ℚ) + use Poly + use N + intro n Nn + specialize aaa n + have this1 : c ≠ 0 → f n = c := by + tauto + constructor + · sorry + · sorry + -- apply Polynomial.degree_C c + + + + + + +-- Δ of 0 times preserve the function +lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by + tauto + +-- Δ of d times maps polynomial of degree d to polynomial of degree 0 +lemma Δ_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by + intro h + rcases h with ⟨Poly, hN⟩ + rcases hN with ⟨N, hh⟩ + have H1 := λ n hn => (hh n hn).left + have H2 := λ n hn => (hh n hn).right + clear hh + have HH2 : d = Polynomial.degree Poly := by + sorry + induction' d with d hd + · rw [PolyType_0] + sorry + · sorry + + + + +-- [BH, 4.1.2] (a) => (b) +-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d +lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) → PolyType f d := by + intro h + rcases h with ⟨c, N, hh⟩ + have H1 := λ n => (hh n).left + have H2 := λ n => (hh n).right + clear hh + have H2 : c ≠ 0 := by + tauto + induction' d with d hd + · rw [PolyType_0] + use c + use N + tauto + · sorry + +-- [BH, 4.1.2] (a) <= (b) +-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0 +lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) := by + intro h + have : PolyType (Δ f d) 0 := by + apply Δ_PolyType_d_to_PolyType_0 + exact h + have this1 : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) n = c) ∧ c ≠ 0)) := by + rw [←PolyType_0] + exact this + exact this1 +end + + + + + +-- @Additive lemma of length for a SES +-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0 +section +-- variable {R M N : Type _} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] +-- (f : M →[R] N) +open LinearMap +-- variable {R M : Type _} [CommRing R] [AddCommGroup M] [Module R M] +-- noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤} + + +-- Definitiion of the length of a module +noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < ⊤} +#check length ℤ ℤ +-- #eval length ℤ ℤ + + +-- @[ext] +-- structure SES (R : Type _) [CommRing R] where +-- A : Type _ +-- B : Type _ +-- C : Type _ +-- f : A →ₗ[R] B +-- g : B →ₗ[R] C +-- left_exact : LinearMap.ker f = 0 +-- middle_exact : LinearMap.range f = LinearMap.ker g +-- right_exact : LinearMap.range g = C + + + +-- Definition of a SES (Short Exact Sequence) +-- @[ext] +structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B] + [AddCommGroup C] [Module R A] [Module R B] [Module R C] + (f : A →ₗ[R] B) (g : B →ₗ[R] C) + where + left_exact : LinearMap.ker f = ⊥ + middle_exact : LinearMap.range f = LinearMap.ker g + right_exact : LinearMap.range g = ⊤ + +#check SES.right_exact +#check SES + + +-- Additive lemma +lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C] + (f : A →ₗ[R] B) (g : B →ₗ[R] C) + : (SES f g) → ((length R A) + (length R C) = (length R B)) := by + intro h + rcases h with ⟨left_exact, middle_exact, right_exact⟩ + sorry + +end section + + + + + + +