mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge pull request #38 from GTBarkley/sayantan
update: Finally, the proof of dim_eq_zero_iff_field is complete
This commit is contained in:
commit
1dff00ff39
1 changed files with 20 additions and 19 deletions
|
@ -9,11 +9,6 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
|
||||
namespace Ideal
|
||||
|
||||
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
||||
constructor
|
||||
|
||||
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
@ -52,30 +47,36 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
|||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
noncomputable
|
||||
instance : CompleteLattice (WithBot ℕ∞) :=
|
||||
inferInstanceAs <| CompleteLattice (WithBot (WithTop ℕ))
|
||||
|
||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
unfold krullDim at h
|
||||
simp [height] at h
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||
have PgtBot : P > ⊥ := Ne.bot_lt h1
|
||||
have pos_height : ↑(Set.chainHeight {J | J < P}) > 0 := by
|
||||
have : ⊥ ∈ {J | J < P} := PgtBot
|
||||
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||
-- have : {J | J < P} ≠ ∅ := Set.Nonempty.ne_empty this
|
||||
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
|
||||
have h2 : P' ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
||||
contradiction
|
||||
have PgtBot : P' > ⊥ := Ne.bot_lt h2
|
||||
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||
have : ⊥ ∈ {J | J < P'} := PgtBot
|
||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact Iff.mp ENat.one_le_iff_pos this
|
||||
have zero_height : ↑(Set.chainHeight {J | J < P}) = 0 := by
|
||||
-- Probably need to use Sup_le or something here
|
||||
sorry
|
||||
have : ↑(Set.chainHeight {J | J < P}) ≠ 0 := Iff.mp pos_iff_ne_zero pos_height
|
||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||
have zero_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
||||
rw [iSup_le_iff] at this
|
||||
exact Iff.mp WithBot.coe_le_zero (this P')
|
||||
contradiction
|
||||
|
||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact isField.dim_zero
|
||||
· intro fieldD
|
||||
have : Field D := IsField.toField fieldD
|
||||
-- Not exactly sure why this is failing
|
||||
-- apply @dim_field_eq_zero D _
|
||||
sorry
|
||||
let h : Field D := IsField.toField fieldD
|
||||
exact dim_field_eq_zero
|
Loading…
Reference in a new issue