update: Finally, the proof of dim_eq_zero_iff_field is complete

This commit is contained in:
Sayantan Santra 2023-06-13 14:08:04 -07:00
parent edeaf1829c
commit dedb9711c7
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F

View file

@ -9,11 +9,6 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
namespace Ideal
example (x : Nat) : List.Chain' (· < ·) [x] := by
constructor
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
@ -52,30 +47,36 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim
simp [field_prime_height_zero]
noncomputable
instance : CompleteLattice (WithBot ℕ∞) :=
inferInstanceAs <| CompleteLattice (WithBot (WithTop ))
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
unfold krullDim at h
simp [height] at h
by_contra x
rw [Ring.not_isField_iff_exists_prime] at x
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
have PgtBot : P > ⊥ := Ne.bot_lt h1
have pos_height : ↑(Set.chainHeight {J | J < P}) > 0 := by
have : ⊥ ∈ {J | J < P} := PgtBot
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
-- have : {J | J < P} ≠ ∅ := Set.Nonempty.ne_empty this
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
have h2 : P' ≠ ⊥ := by
by_contra a
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
contradiction
have PgtBot : P' > ⊥ := Ne.bot_lt h2
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
have : ⊥ ∈ {J | J < P'} := PgtBot
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
rw [←Set.one_le_chainHeight_iff] at this
exact Iff.mp ENat.one_le_iff_pos this
have zero_height : ↑(Set.chainHeight {J | J < P}) = 0 := by
-- Probably need to use Sup_le or something here
sorry
have : ↑(Set.chainHeight {J | J < P}) ≠ 0 := Iff.mp pos_iff_ne_zero pos_height
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
have zero_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
rw [iSup_le_iff] at this
exact Iff.mp WithBot.coe_le_zero (this P')
contradiction
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
constructor
· exact isField.dim_zero
· intro fieldD
have : Field D := IsField.toField fieldD
-- Not exactly sure why this is failing
-- apply @dim_field_eq_zero D _
sorry
let h : Field D := IsField.toField fieldD
exact dim_field_eq_zero