mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
commit
03391a83dd
1 changed files with 30 additions and 15 deletions
|
@ -190,6 +190,14 @@ lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
|||
rw [WithBot.coe_lt_coe]
|
||||
exact lt_height_iff'
|
||||
|
||||
/-- Convert elements in Ideal.minimalPrimes to PrimeSpectrum -/
|
||||
lemma minimalPrimes.toPrimeSpectrum {R : Type _} [CommRing R] {I P : Ideal R} : P ∈ Ideal.minimalPrimes I → PrimeSpectrum R := by
|
||||
unfold Ideal.minimalPrimes
|
||||
intro Pmin
|
||||
obtain ⟨L, _⟩ := Pmin
|
||||
simp only [Set.mem_setOf_eq] at L
|
||||
exact PrimeSpectrum.mk P L.1
|
||||
|
||||
#check height_le_krullDim
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
|
@ -356,7 +364,9 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
|||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
||||
private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} ≤ 1 := by
|
||||
/-- Singleton sets have chainHeight 1 -/
|
||||
lemma singleton_chainHeight_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} = 1 := by
|
||||
have le : Set.chainHeight {x} ≤ 1 := by
|
||||
unfold Set.chainHeight
|
||||
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||
intro L h
|
||||
|
@ -369,6 +379,12 @@ private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α]
|
|||
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||||
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||||
exact absurd h1 (lt_irrefl _)
|
||||
suffices : Set.chainHeight {x} > 0
|
||||
· change _ < _ at this
|
||||
rw [←ENat.one_le_iff_pos] at this
|
||||
apply le_antisymm <;> trivial
|
||||
by_contra x
|
||||
simp only [gt_iff_lt, not_lt, nonpos_iff_eq_zero, Set.chainHeight_eq_zero_iff, Set.singleton_ne_empty] at x
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
|
@ -378,7 +394,6 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
|
|||
· unfold krullDim
|
||||
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||||
intro I
|
||||
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||
by_cases I = ⊥
|
||||
· rw [← height_zero_iff_bot] at h
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
|
@ -416,7 +431,7 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
|
|||
unfold height
|
||||
rw [sngletn]
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
exact singleton_chainHeight_le_one
|
||||
exact le_of_eq singleton_chainHeight_one
|
||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||
· obtain ⟨I, h⟩ := this
|
||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||
|
|
Loading…
Reference in a new issue