diff --git a/CommAlg/krull.lean b/CommAlg/krull.lean index 32ec3cb..23a6528 100644 --- a/CommAlg/krull.lean +++ b/CommAlg/krull.lean @@ -190,6 +190,14 @@ lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : rw [WithBot.coe_lt_coe] exact lt_height_iff' +/-- Convert elements in Ideal.minimalPrimes to PrimeSpectrum -/ +lemma minimalPrimes.toPrimeSpectrum {R : Type _} [CommRing R] {I P : Ideal R} : P ∈ Ideal.minimalPrimes I → PrimeSpectrum R := by + unfold Ideal.minimalPrimes + intro Pmin + obtain ⟨L, _⟩ := Pmin + simp only [Set.mem_setOf_eq] at L + exact PrimeSpectrum.mk P L.1 + #check height_le_krullDim --some propositions that would be nice to be able to eventually @@ -356,19 +364,27 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 rw [dim_le_one_iff] exact Ring.DimensionLEOne.principal_ideal_ring R -private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} ≤ 1 := by - unfold Set.chainHeight - simp only [iSup_le_iff, Nat.cast_le_one] - intro L h - unfold Set.subchain at h - simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h - rcases L with (_ | ⟨a,L⟩) - . simp only [List.length_nil, zero_le] - rcases L with (_ | ⟨b,L⟩) - . simp only [List.length_singleton, le_refl] - simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h - rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩ - exact absurd h1 (lt_irrefl _) +/-- Singleton sets have chainHeight 1 -/ +lemma singleton_chainHeight_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} = 1 := by + have le : Set.chainHeight {x} ≤ 1 := by + unfold Set.chainHeight + simp only [iSup_le_iff, Nat.cast_le_one] + intro L h + unfold Set.subchain at h + simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h + rcases L with (_ | ⟨a,L⟩) + . simp only [List.length_nil, zero_le] + rcases L with (_ | ⟨b,L⟩) + . simp only [List.length_singleton, le_refl] + simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h + rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩ + exact absurd h1 (lt_irrefl _) + suffices : Set.chainHeight {x} > 0 + · change _ < _ at this + rw [←ENat.one_le_iff_pos] at this + apply le_antisymm <;> trivial + by_contra x + simp only [gt_iff_lt, not_lt, nonpos_iff_eq_zero, Set.chainHeight_eq_zero_iff, Set.singleton_ne_empty] at x /-- The ring of polynomials over a field has dimension one. -/ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by @@ -378,7 +394,6 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD · unfold krullDim apply @iSup_le (WithBot ℕ∞) _ _ _ _ intro I - have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance by_cases I = ⊥ · rw [← height_zero_iff_bot] at h simp only [WithBot.coe_le_one, ge_iff_le] @@ -416,7 +431,7 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD unfold height rw [sngletn] simp only [WithBot.coe_le_one, ge_iff_le] - exact singleton_chainHeight_le_one + exact le_of_eq singleton_chainHeight_one · suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞) · obtain ⟨I, h⟩ := this have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by