mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
fixed merge conflics
This commit is contained in:
parent
f225a9e262
commit
0089e927e1
1 changed files with 0 additions and 27 deletions
|
@ -139,11 +139,6 @@ lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s :
|
||||||
rcases hh with ⟨N,ss⟩
|
rcases hh with ⟨N,ss⟩
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- set_option pp.all true in
|
|
||||||
-- PolyType 0 = constant function
|
-- PolyType 0 = constant function
|
||||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
||||||
(N ≤ n → f n = c)) ∧ c ≠ 0) := by
|
(N ≤ n → f n = c)) ∧ c ≠ 0) := by
|
||||||
|
@ -179,11 +174,6 @@ lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto
|
||||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
|
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||||||
sorry
|
sorry
|
||||||
|
@ -208,23 +198,6 @@ lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ
|
||||||
|
|
||||||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
|
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) => (b)
|
|
||||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
|
||||||
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) → PolyType f d := by
|
|
||||||
intro h
|
|
||||||
rcases h with ⟨c, N, hh⟩
|
|
||||||
have H1 := λ n => (hh n).left
|
|
||||||
have H2 := λ n => (hh n).right
|
|
||||||
clear hh
|
|
||||||
have H2 : c ≠ 0 := by
|
|
||||||
tauto
|
|
||||||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by
|
|
||||||
intro h
|
|
||||||
have this : ∀ (d : ℕ), ∀ (f :ℤ → ℤ), (PolyType f d) → (PolyType (Δ f d) 0) := by
|
|
||||||
exact foofoo
|
|
||||||
specialize this d f
|
|
||||||
tauto
|
|
||||||
|
|
||||||
lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue