diff --git a/CommAlg/final_poly_type.lean b/CommAlg/final_poly_type.lean index e192575..dcb0e70 100644 --- a/CommAlg/final_poly_type.lean +++ b/CommAlg/final_poly_type.lean @@ -139,11 +139,6 @@ lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : rcases hh with ⟨N,ss⟩ sorry - - - - --- set_option pp.all true in -- PolyType 0 = constant function lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → f n = c)) ∧ c ≠ 0) := by @@ -179,11 +174,6 @@ lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by sorry - - - - - -- Δ of d times maps polynomial of degree d to polynomial of degree 0 lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by sorry @@ -208,23 +198,6 @@ lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h --- [BH, 4.1.2] (a) => (b) --- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d -lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) → PolyType f d := by - intro h - rcases h with ⟨c, N, hh⟩ - have H1 := λ n => (hh n).left - have H2 := λ n => (hh n).right - clear hh - have H2 : c ≠ 0 := by - tauto -lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by - intro h - have this : ∀ (d : ℕ), ∀ (f :ℤ → ℤ), (PolyType f d) → (PolyType (Δ f d) 0) := by - exact foofoo - specialize this d f - tauto - lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by induction' d with d hd