2023-06-12 15:03:35 -05:00
|
|
|
|
import Mathlib.RingTheory.Ideal.Operations
|
|
|
|
|
import Mathlib.RingTheory.FiniteType
|
2023-06-10 10:13:10 -05:00
|
|
|
|
import Mathlib.Order.Height
|
|
|
|
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
|
|
|
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
|
|
|
|
import Mathlib.RingTheory.Ideal.Quotient
|
|
|
|
|
import Mathlib.RingTheory.Localization.AtPrime
|
2023-06-11 23:02:46 -05:00
|
|
|
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
2023-06-12 11:49:40 -05:00
|
|
|
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
|
|
|
|
/- This file contains the definitions of height of an ideal, and the krull
|
|
|
|
|
dimension of a commutative ring.
|
|
|
|
|
There are also sorried statements of many of the theorems that would be
|
|
|
|
|
really nice to prove.
|
|
|
|
|
I'm imagining for this file to ultimately contain basic API for height and
|
|
|
|
|
krull dimension, and the theorems will probably end up other files,
|
|
|
|
|
depending on how long the proofs are, and what extra API needs to be
|
|
|
|
|
developed.
|
|
|
|
|
-/
|
|
|
|
|
|
2023-06-11 23:02:46 -05:00
|
|
|
|
namespace Ideal
|
2023-06-12 16:27:09 -05:00
|
|
|
|
open LocalRing
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
2023-06-11 23:02:46 -05:00
|
|
|
|
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
2023-06-11 23:15:30 -05:00
|
|
|
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
2023-06-12 11:49:40 -05:00
|
|
|
|
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
|
|
|
|
|
|
|
|
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
|
|
|
|
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
|
|
|
|
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
|
|
|
|
|
|
|
|
|
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
|
|
|
|
|
2023-06-12 16:27:09 -05:00
|
|
|
|
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
|
|
|
|
apply Set.chainHeight_mono
|
|
|
|
|
intro J' hJ'
|
|
|
|
|
show J' < J
|
|
|
|
|
exact lt_of_lt_of_le hJ' I_le_J
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
2023-06-12 16:27:09 -05:00
|
|
|
|
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) :
|
|
|
|
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
|
|
|
|
|
|
|
|
|
lemma krullDim_le_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
|
|
|
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
|
|
|
|
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
|
|
|
|
|
|
|
|
|
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
|
|
|
|
apply le_antisymm
|
|
|
|
|
. rw [krullDim_le_iff']
|
|
|
|
|
intro I
|
|
|
|
|
apply WithBot.coe_mono
|
|
|
|
|
apply height_le_of_le
|
|
|
|
|
apply le_maximalIdeal
|
|
|
|
|
exact I.2.1
|
|
|
|
|
. simp
|
|
|
|
|
|
|
|
|
|
#check height_le_krullDim
|
2023-06-10 10:13:10 -05:00
|
|
|
|
--some propositions that would be nice to be able to eventually
|
|
|
|
|
|
2023-06-13 15:34:02 -05:00
|
|
|
|
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
|
|
|
|
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
|
|
|
|
|
|
|
|
|
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
|
|
|
|
constructor
|
|
|
|
|
. contrapose
|
|
|
|
|
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
|
|
|
|
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
|
|
|
|
. intro h
|
|
|
|
|
by_contra hneg
|
|
|
|
|
rw [not_isEmpty_iff] at hneg
|
|
|
|
|
rcases hneg with ⟨a, ha⟩
|
|
|
|
|
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
|
|
|
|
|
|
|
|
|
|
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
|
|
|
|
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
|
|
|
|
unfold Ideal.krullDim
|
|
|
|
|
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
|
|
|
|
constructor <;> intro h
|
|
|
|
|
. rw [←not_nonempty_iff]
|
|
|
|
|
rintro ⟨a, ha⟩
|
|
|
|
|
specialize h ⟨a, ha⟩
|
|
|
|
|
tauto
|
|
|
|
|
. rw [h.forall_iff]
|
|
|
|
|
trivial
|
2023-06-12 15:03:35 -05:00
|
|
|
|
|
2023-06-12 11:49:40 -05:00
|
|
|
|
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
|
|
|
|
#check Ring.DimensionLEOne
|
2023-06-12 11:49:40 -05:00
|
|
|
|
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
2023-06-12 11:49:40 -05:00
|
|
|
|
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
2023-06-11 23:02:46 -05:00
|
|
|
|
rw [dim_le_one_iff]
|
|
|
|
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
|
|
|
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
2023-06-12 11:49:40 -05:00
|
|
|
|
krullDim R ≤ krullDim (Polynomial R) + 1 := sorry
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
|
|
|
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
2023-06-12 11:49:40 -05:00
|
|
|
|
krullDim R = krullDim (Polynomial R) + 1 := sorry
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
2023-06-11 23:02:46 -05:00
|
|
|
|
lemma height_eq_dim_localization :
|
2023-06-12 11:49:40 -05:00
|
|
|
|
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
|
2023-06-10 10:13:10 -05:00
|
|
|
|
|
2023-06-12 11:49:40 -05:00
|
|
|
|
lemma height_add_dim_quotient_le_dim : height I + krullDim (R ⧸ I.asIdeal) ≤ krullDim R := sorry
|