mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2025-01-13 15:23:47 -06:00
corrected definition of height, krull dim
This commit is contained in:
parent
17bc8ade26
commit
a8b295fa0e
1 changed files with 12 additions and 9 deletions
|
@ -4,6 +4,7 @@ import Mathlib.RingTheory.PrincipalIdealDomain
|
|||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
|
||||
/- This file contains the definitions of height of an ideal, and the krull
|
||||
dimension of a commutative ring.
|
||||
|
@ -15,22 +16,24 @@ import Mathlib.RingTheory.Localization.AtPrime
|
|||
developed.
|
||||
-/
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : Ideal R)
|
||||
namespace Ideal
|
||||
|
||||
namespace ideal
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J | J ≤ I ∧ J.IsPrime}
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J ≤ I} - 1
|
||||
|
||||
noncomputable def krull_dim (R : Type _) [CommRing R] := height (⊤ : Ideal R)
|
||||
noncomputable def krull_dim (R : Type) [CommRing R]: WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
lemma dim_eq_zero_iff_field : krull_dim R = 0 ↔ IsField R := sorry
|
||||
lemma dim_eq_zero_iff_field : krull_dim R = 0 ↔ IsField R := by sorry
|
||||
|
||||
#check Ring.DimensionLEOne
|
||||
lemma dim_le_one_iff : krull_dim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||
|
||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krull_dim R ≤ 1 := sorry
|
||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krull_dim R ≤ 1 := by
|
||||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krull_dim R ≤ krull_dim (Polynomial R) + 1 := sorry
|
||||
|
@ -38,7 +41,7 @@ lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
|||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krull_dim R = krull_dim (Polynomial R) + 1 := sorry
|
||||
|
||||
lemma height_eq_dim_localization [Ideal.IsPrime I] :
|
||||
height I = krull_dim (Localization.AtPrime I) := sorry
|
||||
lemma height_eq_dim_localization :
|
||||
height I = krull_dim (Localization.AtPrime I.asIdeal) := sorry
|
||||
|
||||
lemma height_add_dim_quotient_le_dim : height I + krull_dim (R ⧸ I) ≤ krull_dim R := sorry
|
||||
lemma height_add_dim_quotient_le_dim : height I + krull_dim (R ⧸ I.asIdeal) ≤ krull_dim R := sorry
|
Loading…
Reference in a new issue