comm_alg/CommAlg/grant2.lean

111 lines
4.3 KiB
Text
Raw Permalink Normal View History

import Mathlib.Order.KrullDimension
import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.Noetherian
import CommAlg.krull
variable {R : Type _} [CommRing R] [IsNoetherianRing R]
lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R)
(h : ∀(p : PrimeSpectrum R), p < q → Ideal.height p ≤ n - 1) : Ideal.height q ≤ n := by
sorry
theorem height_le_one_of_minimal_over_principle (p : PrimeSpectrum R) (x : R):
p ∈ minimals (· < ·) {p | x ∈ p.asIdeal} → Ideal.height p ≤ 1 := by
intro h
-- apply height_le_of_gt_height_lt _ p
-- intro q qlep
-- by_contra hcontr
-- push_neg at hcontr
-- simp only [le_refl, tsub_eq_zero_of_le] at hcontr
sorry
#check (_ : Ideal R) ^ (_ : )
#synth Pow (Ideal R) ()
def symbolicIdeal (Q : Ideal R) [hin : Q.IsPrime] (I : Ideal R) : Ideal R where
carrier := {r : R | ∃ s : R, s ∉ Q ∧ s * r ∈ I}
zero_mem' := by
simp only [Set.mem_setOf_eq, mul_zero, Submodule.zero_mem, and_true]
use 1
rw [←Q.ne_top_iff_one]
exact hin.ne_top
add_mem' := by
rintro a b ⟨sa, hsa1, hsa2⟩ ⟨sb, hsb1, hsb2⟩
use sa * sb
constructor
. intro h
cases hin.mem_or_mem h <;> contradiction
ring_nf
apply I.add_mem --<;> simp only [I.mul_mem_left, hsa2, hsb2]
. rw [mul_comm sa, mul_assoc]
exact I.mul_mem_left sb hsa2
. rw [mul_assoc]
exact I.mul_mem_left sa hsb2
smul_mem' := by
intro c x
dsimp
rintro ⟨s, hs1, hs2⟩
use s
constructor; exact hs1
rw [←mul_assoc, mul_comm s, mul_assoc]
exact Ideal.mul_mem_left _ _ hs2
theorem Noetherian.height_zero_iff_symbolicPower_eq [IsNoetherianRing R] (P : Ideal R) [P.IsPrime] :
(∃ n : , symbolicIdeal P (P ^ n) = symbolicIdeal P (P ^ n.succ)) ↔ Ideal.height ⟨P, inferInstance⟩ = 0 := sorry
2023-06-15 23:57:28 -05:00
2023-06-16 00:05:39 -05:00
theorem WF_interval_le_prime [IsNoetherianRing R] (I : Ideal R) (P : Ideal R) [P.IsPrime]
2023-06-15 23:57:28 -05:00
(h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ):
WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry
-- theorem smul_sup_eq_smul_sup_of_le_smul_of_le_jacobson {I J : Ideal R} {N N' : Submodule R M}
-- (hN' : N'.FG) (hIJ : I ≤ jacobson J) (hNN : N ⊔ N' ≤ N ⊔ I • N') : N ⊔ I • N' = N ⊔ J • N' := sorry
lemma nakaka {N N' I P : Ideal R} [P.IsPrime] [IsNoetherianRing R]
(hIP : I ≤ P) (hN : N ≤ P) (hNN : N ⊔ N' ≤ N ⊔ I • N') : N ⊔ I • N' = N := sorry
lemma symbolicPower_one (Q : Ideal R) [Q.IsPrime] : symbolicIdeal Q (Q ^ 1) = Q := sorry
lemma symbolicPower_subset (Q : Ideal R) [Q.IsPrime] {n m : } (h : m ≤ n) : symbolicIdeal Q (Q ^ n) ≤ symbolicIdeal Q (Q ^ m) := sorry
protected lemma LocalRing.height_le_one_of_minimal_over_principle
2023-06-15 23:57:28 -05:00
[LocalRing R] {x : R}
(h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) :
2023-06-15 23:57:28 -05:00
Ideal.height (closedPoint R) ≤ 1 := by
-- by_contra hcont
-- push_neg at hcont
-- rw [Ideal.lt_height_iff'] at hcont
-- rcases hcont with ⟨c, hc1, hc2, hc3⟩
apply height_le_of_gt_height_lt
intro Q hQ
let I := Ideal.span {x}
let P := (closedPoint R).asIdeal
have artint : WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := by
apply WF_interval_le_prime I P
intro J hJ hJPr
symm
apply eq_of_mem_minimals h
. exact ⟨hJPr, hJ.1⟩
. exact hJ.2
let fQ (n : ) : Ideal R := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n)
have : ∃ n, I ⊔ fQ n = I ⊔ fQ (n.succ) := sorry
simp only [le_refl, tsub_eq_zero_of_le, nonpos_iff_eq_zero]
apply (Noetherian.height_zero_iff_symbolicPower_eq _).mp
obtain ⟨n, hn⟩ := this
use n
have : fQ n.succ ⊔ I • fQ n = fQ n := sorry
show fQ n = fQ n.succ
rw [←this]
apply nakaka (P := P)-- (N := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n.succ)) (N' := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n)) (I := I) (P := P)
. exact h.1.2
. calc
_ ≤ fQ 1 := symbolicPower_subset Q.asIdeal (by show 1 ≤ n + 1; simp only [le_add_iff_nonneg_left, zero_le] : 1 ≤ n.succ)
_ = Q.asIdeal := symbolicPower_one _
_ ≤ P := le_of_lt hQ
. suffices fQ n = fQ n.succ ⊔ I • fQ n by
rw [←this, sup_eq_right.mpr]
exact symbolicPower_subset Q.asIdeal (by show _ ≤ n + 1; simp : n ≤ n.succ)
symm
assumption