matrix-basic/src/lib.rs

625 lines
20 KiB
Rust

//! This is a crate for very basic matrix operations
//! with any type that implement [`Add`], [`Sub`], [`Mul`],
//! [`Zero`], [`Neg`] and [`Copy`]. Additional properties might be
//! needed for certain operations.
//!
//! I created it mostly to learn using generic types
//! and traits.
//!
//! Sayantan Santra (2023)
use errors::MatrixError;
use num::{
traits::{One, Zero},
Integer,
};
use std::{
fmt::{self, Debug, Display, Formatter},
ops::{Add, Div, Mul, Neg, Sub},
result::Result,
};
pub mod errors;
mod tests;
/// Trait a type must satisfy to be element of a matrix. This is
/// mostly to reduce writing trait bounds afterwards.
pub trait ToMatrix:
Mul<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Zero<Output = Self>
+ Neg<Output = Self>
+ Copy
{
}
/// Blanket implementation for [`ToMatrix`] for any type that satisfies its bounds.
impl<T> ToMatrix for T where
T: Mul<Output = T>
+ Add<Output = T>
+ Sub<Output = T>
+ Zero<Output = T>
+ Neg<Output = T>
+ Copy
{
}
/// A generic matrix struct (over any type with [`Add`], [`Sub`], [`Mul`],
/// [`Zero`], [`Neg`] and [`Copy`] implemented).
/// Look at [`from`](Self::from()) to see examples.
#[derive(PartialEq, Debug, Clone)]
pub struct Matrix<T: ToMatrix> {
entries: Vec<Vec<T>>,
}
impl<T: ToMatrix> Matrix<T> {
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
/// It'll throw an error if all the given rows aren't of the same size.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2, 3], vec![4, 5, 6]]);
/// ```
/// will create the following matrix:
/// ⌈1, 2, 3⌉
/// ⌊4, 5, 6⌋
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, MatrixError> {
let mut equal_rows = true;
let row_len = entries[0].len();
for row in &entries {
if row_len != row.len() {
equal_rows = false;
break;
}
}
if equal_rows {
Ok(Matrix { entries })
} else {
Err(MatrixError::UnequalRows)
}
}
/// Returns the height of a matrix.
pub fn height(&self) -> usize {
self.entries.len()
}
/// Returns the width of a matrix.
pub fn width(&self) -> usize {
self.entries[0].len()
}
/// Returns the transpose of a matrix.
pub fn transpose(&self) -> Self {
let mut out = Vec::new();
for i in 0..self.width() {
let mut column = Vec::new();
for row in &self.entries {
column.push(row[i]);
}
out.push(column)
}
Matrix { entries: out }
}
/// Returns a reference to the rows of a matrix as `&Vec<Vec<T>>`.
pub fn rows(&self) -> &Vec<Vec<T>> {
&self.entries
}
/// Return the columns of a matrix as `Vec<Vec<T>>`.
pub fn columns(&self) -> Vec<Vec<T>> {
self.transpose().entries
}
/// Return true if a matrix is square and false otherwise.
pub fn is_square(&self) -> bool {
self.height() == self.width()
}
/// Returns a matrix after removing the provided row and column from it.
/// Note: Row and column numbers are 0-indexed.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
/// let n = Matrix::from(vec![vec![5, 6]]).unwrap();
/// assert_eq!(m.submatrix(0, 0), n);
/// ```
pub fn submatrix(&self, row: usize, col: usize) -> Self {
let mut out = Vec::new();
for (m, row_iter) in self.entries.iter().enumerate() {
if m == row {
continue;
}
let mut new_row = Vec::new();
for (n, entry) in row_iter.iter().enumerate() {
if n != col {
new_row.push(*entry);
}
}
out.push(new_row);
}
Matrix { entries: out }
}
/// Returns the determinant of a square matrix.
/// This uses basic recursive algorithm using cofactor-minor.
/// See [`det_in_field`](Self::det_in_field()) for faster determinant calculation in fields.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2], vec![3, 4]]).unwrap();
/// assert_eq!(m.det(), Ok(-2));
/// ```
pub fn det(&self) -> Result<T, MatrixError> {
if self.is_square() {
// It's a recursive algorithm using minors.
// TODO: Implement a faster algorithm.
let out = if self.width() == 1 {
self.entries[0][0]
} else {
// Add the minors multiplied by cofactors.
let n = 0..self.width();
let mut out = T::zero();
for i in n {
if i.is_even() {
out = out + (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
} else {
out = out - (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
}
}
out
};
Ok(out)
} else {
Err(MatrixError::NotSquare)
}
}
/// Returns the determinant of a square matrix over a field i.e. needs [`One`] and [`Div`] traits.
/// See [`det`](Self::det()) for determinants in rings.
/// This method uses row reduction as is much faster.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap();
/// assert_eq!(m.det_in_field(), Ok(-2.0));
/// ```
pub fn det_in_field(&self) -> Result<T, MatrixError>
where
T: One,
T: PartialEq,
T: Div<Output = T>,
{
if self.is_square() {
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let mut multiplier = T::one();
let h = self.height();
let w = self.width();
for i in 0..(h - 1) {
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i] != T::zero() {
rows.swap(i, j);
multiplier = -multiplier;
zero_column = false;
break;
}
}
if zero_column {
return Ok(T::zero());
}
}
for j in (i + 1)..h {
let ratio = rows[j][i] / rows[i][i];
for k in i..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
}
}
for (i, row) in rows.iter().enumerate() {
multiplier = multiplier * row[i];
}
Ok(multiplier)
} else {
Err(MatrixError::NotSquare)
}
}
/// Returns the row echelon form of a matrix over a field i.e. needs the [`Div`] trait.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![3.0, 4.0, 5.0]]).unwrap();
/// let n = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, -2.0, -4.0]]).unwrap();
/// assert_eq!(m.row_echelon(), n);
/// ```
pub fn row_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let mut offset = 0;
let h = self.height();
let w = self.width();
for i in 0..(h - 1) {
// Check if all the rows below are 0
if i + offset >= self.width() {
break;
}
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i + offset] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i + offset] != T::zero() {
rows.swap(i, j);
zero_column = false;
break;
}
}
if zero_column {
offset += 1;
}
}
for j in (i + 1)..h {
let ratio = rows[j][i + offset] / rows[i][i + offset];
for k in (i + offset)..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
}
}
Matrix { entries: rows }
}
/// Returns the column echelon form of a matrix over a field i.e. needs the [`Div`] trait.
/// It's just the transpose of the row echelon form of the transpose.
/// See [`row_echelon`](Self::row_echelon()) and [`transpose`](Self::transpose()).
pub fn column_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
self.transpose().row_echelon().transpose()
}
/// Returns the reduced row echelon form of a matrix over a field i.e. needs the `Div`] trait.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![3.0, 4.0, 5.0]]).unwrap();
/// let n = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// assert_eq!(m.reduced_row_echelon(), n);
/// ```
pub fn reduced_row_echelon(&self) -> Self
where
T: PartialEq,
T: Div<Output = T>,
{
let mut echelon = self.row_echelon();
let mut offset = 0;
for row in &mut echelon.entries {
while row[offset] == T::zero() {
offset += 1;
}
let divisor = row[offset];
for entry in row.iter_mut().skip(offset) {
*entry = *entry / divisor;
}
offset += 1;
}
echelon
}
/// Creates a zero matrix of a given size.
pub fn zero(height: usize, width: usize) -> Self {
let mut out = Vec::new();
for _ in 0..height {
let mut new_row = Vec::new();
for _ in 0..width {
new_row.push(T::zero());
}
out.push(new_row);
}
Matrix { entries: out }
}
/// Creates an identity matrix of a given size.
/// It needs the [`One`] trait.
pub fn identity(size: usize) -> Self
where
T: One,
{
let mut out = Matrix::zero(size, size);
for (i, row) in out.entries.iter_mut().enumerate() {
row[i] = T::one();
}
out
}
/// Returns the trace of a square matrix.
/// It'll throw an error if the provided matrix isn't square.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1, 2], vec![3, 4]]).unwrap();
/// assert_eq!(m.trace(), Ok(5));
/// ```
pub fn trace(self) -> Result<T, MatrixError> {
if self.is_square() {
let mut out = self.entries[0][0];
for i in 1..self.height() {
out = out + self.entries[i][i];
}
Ok(out)
} else {
Err(MatrixError::NotSquare)
}
}
/// Returns a diagonal matrix with a given diagonal.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::diagonal_matrix(vec![1, 2, 3]);
/// let n = Matrix::from(vec![vec![1, 0, 0], vec![0, 2, 0], vec![0, 0, 3]]).unwrap();
///
/// assert_eq!(m, n);
/// ```
pub fn diagonal_matrix(diag: Vec<T>) -> Self {
let size = diag.len();
let mut out = Matrix::zero(size, size);
for (i, row) in out.entries.iter_mut().enumerate() {
row[i] = diag[i];
}
out
}
/// Multiplies all entries of a matrix by a scalar.
/// Note that it modifies the supplied matrix.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// let mut m = Matrix::from(vec![vec![1, 2, 0], vec![0, 2, 5], vec![0, 0, 3]]).unwrap();
/// let n = Matrix::from(vec![vec![2, 4, 0], vec![0, 4, 10], vec![0, 0, 6]]).unwrap();
/// m.mul_scalar(2);
///
/// assert_eq!(m, n);
/// ```
pub fn mul_scalar(&mut self, scalar: T) {
for row in &mut self.entries {
for entry in row {
*entry = *entry * scalar;
}
}
}
/// Returns the inverse of a square matrix. Throws an error if the matrix isn't square.
/// /// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap();
/// let n = Matrix::from(vec![vec![-2.0, 1.0], vec![1.5, -0.5]]).unwrap();
/// assert_eq!(m.inverse(), Ok(n));
/// ```
pub fn inverse(&self) -> Result<Self, MatrixError>
where
T: Div<Output = T>,
T: One,
T: PartialEq,
{
if self.is_square() {
// We'll use the basic technique of using an augmented matrix (in essence)
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let h = self.height();
let w = self.width();
let mut out = Self::identity(h).entries;
// First we get row echelon form
for i in 0..(h - 1) {
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i] != T::zero() {
rows.swap(i, j);
out.swap(i, j);
zero_column = false;
break;
}
}
if zero_column {
return Err(MatrixError::Singular);
}
}
for j in (i + 1)..h {
let ratio = rows[j][i] / rows[i][i];
for k in i..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
// We cannot skip entries here as they might not be 0
for k in 0..w {
out[j][k] = out[j][k] - out[i][k] * ratio;
}
}
}
// Then we reduce the rows
for i in 0..h {
if rows[i][i] == T::zero() {
return Err(MatrixError::Singular);
}
let divisor = rows[i][i];
for entry in rows[i].iter_mut().skip(i) {
*entry = *entry / divisor;
}
for entry in out[i].iter_mut() {
*entry = *entry / divisor;
}
}
// Finally, we do upside down row reduction
for i in (1..h).rev() {
for j in (0..i).rev() {
let ratio = rows[j][i];
for k in 0..w {
out[j][k] = out[j][k] - out[i][k] * ratio;
}
}
}
Ok(Matrix { entries: out })
} else {
Err(MatrixError::NotSquare)
}
}
// TODO: Canonical forms, eigenvalues, eigenvectors etc.
}
impl<T: Debug + ToMatrix> Display for Matrix<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}", self.entries)
}
}
impl<T: Mul<Output = T> + ToMatrix> Mul for Matrix<T> {
// TODO: Implement a faster algorithm.
type Output = Self;
fn mul(self, other: Self) -> Self::Output {
let width = self.width();
if width != other.height() {
panic!("row length of first matrix != column length of second matrix");
} else {
let mut out = Vec::new();
for row in self.rows() {
let mut new_row = Vec::new();
for col in other.columns() {
let mut prod = row[0] * col[0];
for i in 1..width {
prod = prod + (row[i] * col[i]);
}
new_row.push(prod)
}
out.push(new_row);
}
Matrix { entries: out }
}
}
}
impl<T: Mul<Output = T> + ToMatrix> Add for Matrix<T> {
type Output = Self;
fn add(self, other: Self) -> Self::Output {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] + *entry;
}
}
Matrix { entries: out }
} else {
panic!("provided matrices have different dimensions");
}
}
}
impl<T: ToMatrix> Neg for Matrix<T> {
type Output = Self;
fn neg(self) -> Self::Output {
let mut out = self;
for row in &mut out.entries {
for entry in row {
*entry = -*entry;
}
}
out
}
}
impl<T: ToMatrix> Sub for Matrix<T> {
type Output = Self;
fn sub(self, other: Self) -> Self::Output {
if self.height() == other.height() && self.width() == other.width() {
self + -other
} else {
panic!("provided matrices have different dimensions");
}
}
}
/// Trait for conversion between matrices of different types.
/// It only has a [`matrix_from()`](Self::matrix_from()) method.
/// This is needed since negative trait bound are not supported in stable Rust
/// yet, so we'll have a conflict trying to implement [`From`].
/// I plan to change this to the default From trait as soon as some sort
/// of specialization system is implemented.
/// You can track this issue [here](https://github.com/rust-lang/rust/issues/42721).
pub trait MatrixFrom<T: ToMatrix> {
/// Method for getting a matrix of a new type from a matrix of type [`Matrix<T>`].
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// use matrix_basic::MatrixFrom;
///
/// let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
/// let b = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// let c = Matrix::<f64>::matrix_from(a); // Type annotation is needed here
///
/// assert_eq!(c, b);
/// ```
fn matrix_from(input: Matrix<T>) -> Self;
}
/// Blanket implementation of [`MatrixFrom<T>`] for converting [`Matrix<S>`] to [`Matrix<T>`] whenever
/// `S` implements [`From(T)`]. Look at [`matrix_into`](Self::matrix_into()).
impl<T: ToMatrix, S: ToMatrix + From<T>> MatrixFrom<T> for Matrix<S> {
fn matrix_from(input: Matrix<T>) -> Self {
let mut out = Vec::new();
for row in input.entries {
let mut new_row: Vec<S> = Vec::new();
for entry in row {
new_row.push(entry.into());
}
out.push(new_row)
}
Matrix { entries: out }
}
}
/// Sister trait of [`MatrixFrom`]. Basically does the same thing, just with a
/// different syntax.
pub trait MatrixInto<T> {
/// Method for converting a matrix [`Matrix<T>`] to another type.
/// # Example
/// ```
/// use matrix_basic::Matrix;
/// use matrix_basic::MatrixInto;
///
/// let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
/// let b = Matrix::from(vec![vec![1.0, 2.0, 3.0], vec![0.0, 1.0, 2.0]]).unwrap();
/// let c: Matrix<f64> = a.matrix_into(); // Type annotation is needed here
///
///
/// assert_eq!(c, b);
/// ```
fn matrix_into(self) -> T;
}
/// Blanket implementation of [`MatrixInto<T>`] for [`Matrix<S>`] whenever `T`
/// (which is actually some)[`Matrix<U>`] implements [`MatrixFrom<S>`].
impl<T: MatrixFrom<S>, S: ToMatrix> MatrixInto<T> for Matrix<S> {
fn matrix_into(self) -> T {
T::matrix_from(self)
}
}