mirror of
https://github.com/SinTan1729/matrix-basic.git
synced 2024-12-25 21:48:35 -06:00
change: Need more traits by default
This commit is contained in:
parent
b469f7458b
commit
5b9aeb0c34
1 changed files with 39 additions and 51 deletions
90
src/lib.rs
90
src/lib.rs
|
@ -1,6 +1,6 @@
|
|||
//! This is a crate for very basic matrix operations
|
||||
//! with any type that supports addition, substraction,
|
||||
//! and multiplication. Additional properties might be
|
||||
//! with any type that implement [`Add`], [`Sub`], [`Mul`],
|
||||
//! [`Zero`] and [`Copy`]. Additional properties might be
|
||||
//! needed for certain operations.
|
||||
//! I created it mostly to learn using generic types
|
||||
//! and traits.
|
||||
|
@ -23,11 +23,11 @@ mod tests;
|
|||
/// and multiplication defined on it).
|
||||
/// Look at [`from`](Self::from()) to see examples.
|
||||
#[derive(PartialEq, Debug, Clone)]
|
||||
pub struct Matrix<T: Mul + Add + Sub> {
|
||||
pub struct Matrix<T: Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + Copy> {
|
||||
entries: Vec<Vec<T>>,
|
||||
}
|
||||
|
||||
impl<T: Mul + Add + Sub> Matrix<T> {
|
||||
impl<T: Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + Copy> Matrix<T> {
|
||||
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
|
||||
/// It'll throw an error if all the given rows aren't of the same size.
|
||||
/// # Example
|
||||
|
@ -65,10 +65,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
}
|
||||
|
||||
/// Returns the transpose of a matrix.
|
||||
pub fn transpose(&self) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
pub fn transpose(&self) -> Self {
|
||||
let mut out = Vec::new();
|
||||
for i in 0..self.width() {
|
||||
let mut column = Vec::new();
|
||||
|
@ -86,10 +83,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
}
|
||||
|
||||
/// Return the columns of a matrix as `Vec<Vec<T>>`.
|
||||
pub fn columns(&self) -> Vec<Vec<T>>
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
pub fn columns(&self) -> Vec<Vec<T>> {
|
||||
self.transpose().entries
|
||||
}
|
||||
|
||||
|
@ -107,10 +101,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
/// let n = Matrix::from(vec![vec![5,6]]).unwrap();
|
||||
/// assert_eq!(m.submatrix(0,0),n);
|
||||
/// ```
|
||||
pub fn submatrix(&self, row: usize, col: usize) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
pub fn submatrix(&self, row: usize, col: usize) -> Self {
|
||||
let mut out = Vec::new();
|
||||
for (m, row_iter) in self.entries.iter().enumerate() {
|
||||
if m == row {
|
||||
|
@ -138,13 +129,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
/// let m = Matrix::from(vec![vec![1,2],vec![3,4]]).unwrap();
|
||||
/// assert_eq!(m.det(),Ok(-2));
|
||||
/// ```
|
||||
pub fn det(&self) -> Result<T, &'static str>
|
||||
where
|
||||
T: Copy,
|
||||
T: Mul<Output = T>,
|
||||
T: Sub<Output = T>,
|
||||
T: Zero,
|
||||
{
|
||||
pub fn det(&self) -> Result<T, &'static str> {
|
||||
if self.is_square() {
|
||||
// It's a recursive algorithm using minors.
|
||||
// TODO: Implement a faster algorithm.
|
||||
|
@ -181,10 +166,6 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
/// ```
|
||||
pub fn det_in_field(&self) -> Result<T, &'static str>
|
||||
where
|
||||
T: Copy,
|
||||
T: Mul<Output = T>,
|
||||
T: Sub<Output = T>,
|
||||
T: Zero,
|
||||
T: One,
|
||||
T: PartialEq,
|
||||
T: Div<Output = T>,
|
||||
|
@ -237,10 +218,6 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
/// ```
|
||||
pub fn row_echelon(&self) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
T: Mul<Output = T>,
|
||||
T: Sub<Output = T>,
|
||||
T: Zero,
|
||||
T: One,
|
||||
T: PartialEq,
|
||||
T: Div<Output = T>,
|
||||
|
@ -284,10 +261,6 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
/// See [`row_echelon`](Self::row_echelon()) and [`transpose`](Self::transpose()).
|
||||
pub fn column_echelon(&self) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
T: Mul<Output = T>,
|
||||
T: Sub<Output = T>,
|
||||
T: Zero,
|
||||
T: One,
|
||||
T: PartialEq,
|
||||
T: Div<Output = T>,
|
||||
|
@ -305,10 +278,6 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
/// ```
|
||||
pub fn reduced_row_echelon(&self) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
T: Mul<Output = T>,
|
||||
T: Sub<Output = T>,
|
||||
T: Zero,
|
||||
T: One,
|
||||
T: PartialEq,
|
||||
T: Div<Output = T>,
|
||||
|
@ -329,10 +298,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
}
|
||||
|
||||
/// Creates a zero matrix of a given size.
|
||||
pub fn zero(height: usize, width: usize) -> Self
|
||||
where
|
||||
T: Zero,
|
||||
{
|
||||
pub fn zero(height: usize, width: usize) -> Self {
|
||||
let mut out = Vec::new();
|
||||
for _ in 0..height {
|
||||
let mut new_row = Vec::new();
|
||||
|
@ -347,7 +313,6 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
/// Creates an identity matrix of a given size.
|
||||
pub fn identity(size: usize) -> Self
|
||||
where
|
||||
T: Zero,
|
||||
T: One,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
|
@ -368,13 +333,17 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
// TODO: Canonical forms, eigenvalues, eigenvectors etc.
|
||||
}
|
||||
|
||||
impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
|
||||
impl<T: Debug + Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + Copy> Display
|
||||
for Matrix<T>
|
||||
{
|
||||
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
||||
write!(f, "{:?}", self.entries)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
|
||||
impl<T: Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + Copy + Copy + Zero> Mul
|
||||
for Matrix<T>
|
||||
{
|
||||
// TODO: Implement a faster algorithm.
|
||||
type Output = Self;
|
||||
fn mul(self, other: Self) -> Self::Output {
|
||||
|
@ -399,7 +368,9 @@ impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
|
||||
impl<T: Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + Copy + Copy + Zero> Add
|
||||
for Matrix<T>
|
||||
{
|
||||
type Output = Self;
|
||||
fn add(self, other: Self) -> Self::Output {
|
||||
if self.height() == other.height() && self.width() == other.width() {
|
||||
|
@ -416,7 +387,10 @@ impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<T: Add + Sub<Output = T> + Mul + Copy + Neg<Output = T>> Neg for Matrix<T> {
|
||||
impl<
|
||||
T: Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + Copy + Copy + Neg<Output = T>,
|
||||
> Neg for Matrix<T>
|
||||
{
|
||||
type Output = Self;
|
||||
fn neg(self) -> Self::Output {
|
||||
let mut out = self;
|
||||
|
@ -429,7 +403,17 @@ impl<T: Add + Sub<Output = T> + Mul + Copy + Neg<Output = T>> Neg for Matrix<T>
|
|||
}
|
||||
}
|
||||
|
||||
impl<T: Add + Sub<Output = T> + Mul + Copy + Zero + Neg<Output = T>> Sub for Matrix<T> {
|
||||
impl<
|
||||
T: Mul<Output = T>
|
||||
+ Add<Output = T>
|
||||
+ Sub<Output = T>
|
||||
+ Zero
|
||||
+ Copy
|
||||
+ Copy
|
||||
+ Zero
|
||||
+ Neg<Output = T>,
|
||||
> Sub for Matrix<T>
|
||||
{
|
||||
type Output = Self;
|
||||
fn sub(self, other: Self) -> Self::Output {
|
||||
if self.height() == other.height() && self.width() == other.width() {
|
||||
|
@ -447,7 +431,7 @@ impl<T: Add + Sub<Output = T> + Mul + Copy + Zero + Neg<Output = T>> Sub for Mat
|
|||
/// I plan to change this to the default From trait as soon as some sort
|
||||
/// of specialization system is implemented.
|
||||
/// You can track this issue [here](https://github.com/rust-lang/rust/issues/42721).
|
||||
pub trait MatrixInto<T: Mul + Add + Sub> {
|
||||
pub trait MatrixInto<T: Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + Copy> {
|
||||
/// Method for converting a matrix into a matrix of type `Matrix<T>`
|
||||
fn matrix_into(self) -> Matrix<T>;
|
||||
}
|
||||
|
@ -465,7 +449,11 @@ pub trait MatrixInto<T: Mul + Add + Sub> {
|
|||
///
|
||||
/// assert_eq!(c, b);
|
||||
/// ```
|
||||
impl<T: Mul + Add + Sub, S: Mul + Add + Sub + Into<T>> MatrixInto<T> for Matrix<S> {
|
||||
impl<
|
||||
T: Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + Copy,
|
||||
S: Mul<Output = S> + Add<Output = S> + Sub<Output = S> + Zero + Copy + Into<T>,
|
||||
> MatrixInto<T> for Matrix<S>
|
||||
{
|
||||
fn matrix_into(self) -> Matrix<T> {
|
||||
let mut out = Vec::new();
|
||||
for row in self.entries {
|
||||
|
|
Loading…
Reference in a new issue