new: Added inverse method

This commit is contained in:
Sayantan Santra 2023-05-27 18:35:06 -05:00
parent e9b21e330c
commit 5453bced71
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F
2 changed files with 107 additions and 4 deletions

View file

@ -2,6 +2,7 @@
//! with any type that implement [`Add`], [`Sub`], [`Mul`], //! with any type that implement [`Add`], [`Sub`], [`Mul`],
//! [`Zero`], [`Neg`] and [`Copy`]. Additional properties might be //! [`Zero`], [`Neg`] and [`Copy`]. Additional properties might be
//! needed for certain operations. //! needed for certain operations.
//!
//! I created it mostly to learn using generic types //! I created it mostly to learn using generic types
//! and traits. //! and traits.
//! //!
@ -184,7 +185,7 @@ impl<T: ToMatrix> Matrix<T> {
/// ``` /// ```
/// use matrix_basic::Matrix; /// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap(); /// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap();
/// assert_eq!(m.det(), Ok(-2.0)); /// assert_eq!(m.det_in_field(), Ok(-2.0));
/// ``` /// ```
pub fn det_in_field(&self) -> Result<T, &'static str> pub fn det_in_field(&self) -> Result<T, &'static str>
where where
@ -198,14 +199,14 @@ impl<T: ToMatrix> Matrix<T> {
let mut multiplier = T::one(); let mut multiplier = T::one();
let h = self.height(); let h = self.height();
let w = self.width(); let w = self.width();
for i in 0..h { for i in 0..(h - 1) {
// First check if the row has diagonal element 0, if yes, then swap. // First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i] == T::zero() { if rows[i][i] == T::zero() {
let mut zero_column = true; let mut zero_column = true;
for j in (i + 1)..h { for j in (i + 1)..h {
if rows[j][i] != T::zero() { if rows[j][i] != T::zero() {
rows.swap(i, j); rows.swap(i, j);
multiplier = T::zero() - multiplier; multiplier = -multiplier;
zero_column = false; zero_column = false;
break; break;
} }
@ -248,7 +249,7 @@ impl<T: ToMatrix> Matrix<T> {
let mut offset = 0; let mut offset = 0;
let h = self.height(); let h = self.height();
let w = self.width(); let w = self.width();
for i in 0..h { for i in 0..(h - 1) {
// Check if all the rows below are 0 // Check if all the rows below are 0
if i + offset >= self.width() { if i + offset >= self.width() {
break; break;
@ -399,6 +400,87 @@ impl<T: ToMatrix> Matrix<T> {
} }
} }
/// Returns the inverse of a square matrix. Throws an error if the matrix isn't square.
/// /// # Example
/// ```
/// use matrix_basic::Matrix;
/// let m = Matrix::from(vec![vec![1.0, 2.0], vec![3.0, 4.0]]).unwrap();
/// let n = Matrix::from(vec![vec![-2.0, 1.0], vec![1.5, -0.5]]).unwrap();
/// assert_eq!(m.inverse(), Ok(n));
/// ```
pub fn inverse(&self) -> Result<Self, &'static str>
where
T: Div<Output = T>,
T: One,
T: PartialEq,
{
if self.is_square() {
// We'll use the basic technique of using an augmented matrix (in essence)
// Cloning is necessary as we'll be doing row operations on it.
let mut rows = self.entries.clone();
let h = self.height();
let w = self.width();
let mut out = Self::identity(h).entries;
// First we get row echelon form
for i in 0..(h - 1) {
// First check if the row has diagonal element 0, if yes, then swap.
if rows[i][i] == T::zero() {
let mut zero_column = true;
for j in (i + 1)..h {
if rows[j][i] != T::zero() {
rows.swap(i, j);
out.swap(i, j);
zero_column = false;
break;
}
}
if zero_column {
return Err("Provided matrix is singular.");
}
}
for j in (i + 1)..h {
let ratio = rows[j][i] / rows[i][i];
for k in i..w {
rows[j][k] = rows[j][k] - rows[i][k] * ratio;
}
// We cannot skip entries here as they might not be 0
for k in 0..w {
out[j][k] = out[j][k] - out[i][k] * ratio;
}
}
}
// Then we reduce the rows
for i in 0..h {
if rows[i][i] == T::zero() {
return Err("Provided matrix is singular.");
}
let divisor = rows[i][i];
for entry in rows[i].iter_mut().skip(i) {
*entry = *entry / divisor;
}
for entry in out[i].iter_mut() {
*entry = *entry / divisor;
}
}
// Finally, we do upside down row reduction
for i in (1..h).rev() {
for j in (0..i).rev() {
let ratio = rows[j][i];
for k in 0..w {
out[j][k] = out[j][k] - out[i][k] * ratio;
}
}
}
Ok(Matrix { entries: out })
} else {
Err("Provided matrix isn't square.")
}
}
// TODO: Canonical forms, eigenvalues, eigenvectors etc. // TODO: Canonical forms, eigenvalues, eigenvectors etc.
} }

View file

@ -78,3 +78,24 @@ fn conversion_test() {
let c = Matrix::<f64>::matrix_from(a); let c = Matrix::<f64>::matrix_from(a);
assert_eq!(c, b); assert_eq!(c, b);
} }
#[test]
fn inverse_test() {
let a = Matrix::from(vec![vec![1.0, 2.0], vec![1.0, 2.0]]).unwrap();
let b = Matrix::from(vec![
vec![1.0, 2.0, 3.0],
vec![0.0, 1.0, 4.0],
vec![5.0, 6.0, 0.0],
])
.unwrap();
let c = Matrix::from(vec![
vec![-24.0, 18.0, 5.0],
vec![20.0, -15.0, -4.0],
vec![-5.0, 4.0, 1.0],
])
.unwrap();
println!("{:?}", a.inverse());
assert!(a.inverse().is_err());
assert_eq!(b.inverse(), Ok(c));
}