mirror of
https://github.com/SinTan1729/matrix-basic.git
synced 2024-12-25 05:28:36 -06:00
new: Added det_for_field method
This commit is contained in:
parent
19e410322e
commit
3f8373164b
2 changed files with 67 additions and 4 deletions
64
src/lib.rs
64
src/lib.rs
|
@ -13,7 +13,7 @@ use num::{
|
|||
};
|
||||
use std::{
|
||||
fmt::{self, Debug, Display, Formatter},
|
||||
ops::{Add, Mul, Sub},
|
||||
ops::{Add, Div, Mul, Sub},
|
||||
result::Result,
|
||||
};
|
||||
|
||||
|
@ -129,7 +129,8 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
|
||||
/// Return the determinant of a square matrix. This method additionally requires [`Zero`],
|
||||
/// [`One`] and [`Copy`] traits. Also, we need that the [`Mul`] and [`Add`] operations
|
||||
/// return the same type `T`.
|
||||
/// return the same type `T`. This uses basic recursive algorithm using cofactor-minor.
|
||||
/// See [`det_in_field`](Self::det_in_field()) for faster determinant calculation in fields.
|
||||
/// It'll throw an error if the provided matrix isn't square.
|
||||
/// # Example
|
||||
/// ```
|
||||
|
@ -146,7 +147,7 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
{
|
||||
if self.is_square() {
|
||||
// It's a recursive algorithm using minors.
|
||||
// TODO: Implement a faster algorithm. Maybe use row reduction for fields.
|
||||
// TODO: Implement a faster algorithm.
|
||||
let out = if self.width() == 1 {
|
||||
self.entries[0][0]
|
||||
} else {
|
||||
|
@ -168,6 +169,61 @@ impl<T: Mul + Add + Sub> Matrix<T> {
|
|||
}
|
||||
}
|
||||
|
||||
/// Return the determinant of a square matrix over a field i.e. needs [`One`] and [`Div`] traits.
|
||||
/// See [`det`](Self::det()) for determinants in rings.
|
||||
/// This method uses row reduction as is much faster.
|
||||
/// It'll throw an error if the provided matrix isn't square.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use matrix_basic::Matrix;
|
||||
/// let m = Matrix::from(vec![vec![1,2],vec![3,4]]).unwrap();
|
||||
/// assert_eq!(m.det(),Ok(-2));
|
||||
/// ```
|
||||
pub fn det_in_field(&self) -> Result<T, &'static str>
|
||||
where
|
||||
T: Copy,
|
||||
T: Mul<Output = T>,
|
||||
T: Sub<Output = T>,
|
||||
T: Zero,
|
||||
T: One,
|
||||
T: PartialEq,
|
||||
T: Div<Output = T>,
|
||||
{
|
||||
if self.is_square() {
|
||||
// Cloning is necessary as we'll be doing row operations on it.
|
||||
let mut rows = self.entries.clone();
|
||||
let mut multiplier = T::one();
|
||||
for i in 0..self.height() {
|
||||
// First check if the row has diagonal element 0, if yes, then swap.
|
||||
if rows[i][i] == T::zero() {
|
||||
let mut zero_column = true;
|
||||
for j in (i + 1)..self.height() {
|
||||
if rows[j][i] != T::zero() {
|
||||
rows.swap(i, j);
|
||||
multiplier = T::zero() - multiplier;
|
||||
zero_column = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if zero_column {
|
||||
return Ok(T::zero());
|
||||
}
|
||||
}
|
||||
for j in (i + 1)..self.height() {
|
||||
for k in (i + 1)..self.width() {
|
||||
rows[j][k] = rows[j][k] - rows[i][k] * rows[j][i] / rows[i][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (i, row) in rows.iter().enumerate() {
|
||||
multiplier = multiplier * row[i];
|
||||
}
|
||||
Ok(multiplier)
|
||||
} else {
|
||||
Err("Provided matrix isn't square.")
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a zero matrix of a given size.
|
||||
pub fn zero(height: usize, width: usize) -> Self
|
||||
where
|
||||
|
@ -213,7 +269,7 @@ impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
|
|||
}
|
||||
|
||||
impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
|
||||
// TODO: Implement a faster algorithm. Maybe use row reduction for fields.
|
||||
// TODO: Implement a faster algorithm.
|
||||
type Output = Self;
|
||||
fn mul(self, other: Self) -> Self {
|
||||
let width = self.width();
|
||||
|
|
|
@ -22,7 +22,14 @@ fn add_sub_test() {
|
|||
fn det_test() {
|
||||
let a = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5], vec![0, 0, 10]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5]]).unwrap();
|
||||
let c = Matrix::from(vec![
|
||||
vec![0.0, 0.0, 10.0],
|
||||
vec![0.0, 3.0, 5.0],
|
||||
vec![1.0, 2.0, 0.0],
|
||||
])
|
||||
.unwrap();
|
||||
assert_eq!(a.det(), Ok(30));
|
||||
assert_eq!(c.det_in_field(), Ok(-30.0));
|
||||
assert!(b.det().is_err());
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue