change: Refactoring

This commit is contained in:
Sayantan Santra 2023-05-25 20:28:36 -05:00
parent 9af71d9b72
commit 3d862393d6
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F
3 changed files with 275 additions and 278 deletions

View file

@ -5,43 +5,252 @@
//! //!
//! Sayantan Santra (2023) //! Sayantan Santra (2023)
pub mod matrix; use num::{
traits::{One, Zero},
Integer,
};
use std::{
fmt::{self, Debug, Display, Formatter},
ops::{Add, Mul, Sub},
result::Result,
};
#[cfg(test)] mod tests;
mod tests {
use super::*; /// A generic matrix struct (over any type with addition, substraction
use matrix::Matrix; /// and multiplication defined on it).
#[test] /// Look at [`from`](Self::from()) to see examples.
fn mul_test() { #[derive(PartialEq, Debug, Clone)]
let a = Matrix::from(vec![vec![1, 2, 4], vec![3, 4, 9]]).unwrap(); pub struct Matrix<T: Mul + Add + Sub> {
let b = Matrix::from(vec![vec![1, 2], vec![2, 3], vec![5, 1]]).unwrap(); entries: Vec<Vec<T>>,
let c = Matrix::from(vec![vec![25, 12], vec![56, 27]]).unwrap(); }
assert_eq!(a * b, c);
impl<T: Mul + Add + Sub> Matrix<T> {
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
/// It'll throw error if all the given rows aren't of the same size.
/// # Example
/// ```
/// use matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2,3], vec![4,5,6]]);
/// ```
/// will create the following matrix:
/// ⌈1,2,3⌉
/// ⌊4,5,6⌋
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, &'static str> {
let mut equal_rows = true;
let row_len = entries[0].len();
for row in &entries {
if row_len != row.len() {
equal_rows = false;
break;
}
}
if equal_rows {
Ok(Matrix { entries })
} else {
Err("Unequal rows.")
}
} }
#[test] /// Return the height of a matrix.
fn add_sub_test() { pub fn height(&self) -> usize {
let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap(); self.entries.len()
let b = Matrix::from(vec![vec![0, 0, 1], vec![2, 1, 3]]).unwrap();
let c = Matrix::from(vec![vec![1, 2, 4], vec![2, 2, 5]]).unwrap();
let d = Matrix::from(vec![vec![1, 2, 2], vec![-2, 0, -1]]).unwrap();
assert_eq!(a.clone() + b.clone(), c);
assert_eq!(a - b, d);
} }
#[test] /// Return the width of a matrix.
fn det_test() { pub fn width(&self) -> usize {
let a = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5], vec![0, 0, 10]]).unwrap(); self.entries[0].len()
let b = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5]]).unwrap();
assert_eq!(a.det(), Ok(30));
assert!(b.det().is_err());
} }
#[test] /// Return the transpose of a matrix.
fn zero_one_test() { pub fn transpose(&self) -> Self
let a = Matrix::from(vec![vec![0, 0, 0], vec![0, 0, 0]]).unwrap(); where
let b = Matrix::from(vec![vec![1, 0], vec![0, 1]]).unwrap(); T: Copy,
assert_eq!(Matrix::<i32>::zero(2, 3), a); {
assert_eq!(Matrix::<i32>::identity(2), b); let mut out = Vec::new();
for i in 0..self.width() {
let mut column = Vec::new();
for row in &self.entries {
column.push(row[i]);
}
out.push(column)
}
Matrix { entries: out }
}
/// Return a reference to the rows of a matrix as `&Vec<Vec<T>>`.
pub fn rows(&self) -> &Vec<Vec<T>> {
&self.entries
}
/// Return the columns of a matrix as `Vec<Vec<T>>`.
pub fn columns(&self) -> Vec<Vec<T>>
where
T: Copy,
{
self.transpose().entries
}
/// Return true if a matrix is square and false otherwise.
pub fn is_square(&self) -> bool {
self.height() == self.width()
}
/// Return a matrix after removing the provided row and column from it.
/// Note: Row and column numbers are 0-indexed.
/// # Example
/// ```
/// use matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2,3],vec![4,5,6]]).unwrap();
/// let n = Matrix::from(vec![vec![5,6]]).unwrap();
/// assert_eq!(m.submatrix(0,0),n);
/// ```
pub fn submatrix(&self, row: usize, col: usize) -> Self
where
T: Copy,
{
let mut out = Vec::new();
for (m, row_iter) in self.entries.iter().enumerate() {
if m == row {
continue;
}
let mut new_row = Vec::new();
for (n, entry) in row_iter.iter().enumerate() {
if n != col {
new_row.push(*entry);
}
}
out.push(new_row);
}
Matrix { entries: out }
}
pub fn det(&self) -> Result<T, &'static str>
where
T: Copy,
T: Mul<Output = T>,
T: Sub<Output = T>,
T: Zero,
{
if self.is_square() {
let out = if self.width() == 1 {
self.entries[0][0]
} else {
let n = 0..self.width();
let mut out = T::zero();
for i in n {
if i.is_even() {
out = out + (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
} else {
out = out - (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
}
}
out
};
Ok(out)
} else {
Err("Provided matrix isn't square.")
}
}
/// Creates a zero matrix of a given size.
pub fn zero(height: usize, width: usize) -> Self
where
T: Zero,
{
let mut out = Vec::new();
for _ in 0..height {
let mut new_row = Vec::new();
for _ in 0..width {
new_row.push(T::zero());
}
out.push(new_row);
}
Matrix { entries: out }
}
/// Creates an identity matrix of a given size.
pub fn identity(size: usize) -> Self
where
T: Zero,
T: One,
{
let mut out = Vec::new();
for i in 0..size {
let mut new_row = Vec::new();
for j in 0..size {
if i == j {
new_row.push(T::one());
} else {
new_row.push(T::zero());
}
}
out.push(new_row);
}
Matrix { entries: out }
}
}
impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}", self.entries)
}
}
impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
type Output = Self;
fn mul(self, other: Self) -> Self {
let width = self.width();
if width != other.height() {
panic!("Row length of first matrix must be same as column length of second matrix.");
} else {
let mut out = Vec::new();
for row in self.rows() {
let mut new_row = Vec::new();
for col in other.columns() {
let mut prod = row[0] * col[0];
for i in 1..width {
prod = prod + (row[i] * col[i]);
}
new_row.push(prod)
}
out.push(new_row);
}
Matrix { entries: out }
}
}
}
impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
type Output = Self;
fn add(self, other: Self) -> Self {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] + *entry;
}
}
Matrix { entries: out }
} else {
panic!("Both matrices must be of same dimensions.");
}
}
}
impl<T: Add + Sub<Output = T> + Mul + Copy + Zero> Sub for Matrix<T> {
type Output = Self;
fn sub(self, other: Self) -> Self {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] - *entry;
}
}
Matrix { entries: out }
} else {
panic!("Both matrices must be of same dimensions.");
}
} }
} }

View file

@ -1,247 +0,0 @@
use num::{
traits::{One, Zero},
Integer,
};
use std::{
fmt::{self, Debug, Display, Formatter},
ops::{Add, Mul, Sub},
result::Result,
};
/// A generic matrix struct (over any type with addition, substraction
/// and multiplication defined on it).
/// Look at [`from`](Self::from()) to see examples.
#[derive(PartialEq, Debug, Clone)]
pub struct Matrix<T: Mul + Add + Sub> {
entries: Vec<Vec<T>>,
}
impl<T: Mul + Add + Sub> Matrix<T> {
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
/// It'll throw error if all the given rows aren't of the same size.
/// # Example
/// ```
/// use matrix::matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2,3], vec![4,5,6]]);
/// ```
/// will create the following matrix:
/// ⌈1,2,3⌉
/// ⌊4,5,6⌋
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, &'static str> {
let mut equal_rows = true;
let row_len = entries[0].len();
for row in &entries {
if row_len != row.len() {
equal_rows = false;
break;
}
}
if equal_rows {
Ok(Matrix { entries })
} else {
Err("Unequal rows.")
}
}
/// Return the height of a matrix.
pub fn height(&self) -> usize {
self.entries.len()
}
/// Return the width of a matrix.
pub fn width(&self) -> usize {
self.entries[0].len()
}
/// Return the transpose of a matrix.
pub fn transpose(&self) -> Self
where
T: Copy,
{
let mut out = Vec::new();
for i in 0..self.width() {
let mut column = Vec::new();
for row in &self.entries {
column.push(row[i]);
}
out.push(column)
}
Matrix { entries: out }
}
/// Return a reference to the rows of a matrix as `&Vec<Vec<T>>`.
pub fn rows(&self) -> &Vec<Vec<T>> {
&self.entries
}
/// Return the columns of a matrix as `Vec<Vec<T>>`.
pub fn columns(&self) -> Vec<Vec<T>>
where
T: Copy,
{
self.transpose().entries
}
/// Return true if a matrix is square and false otherwise.
pub fn is_square(&self) -> bool {
self.height() == self.width()
}
/// Return a matrix after removing the provided row and column from it.
/// Note: Row and column numbers are 0-indexed.
/// # Example
/// ```
/// use matrix::matrix::Matrix;
/// let m = Matrix::from(vec![vec![1,2,3],vec![4,5,6]]).unwrap();
/// let n = Matrix::from(vec![vec![5,6]]).unwrap();
/// assert_eq!(m.submatrix(0,0),n);
/// ```
pub fn submatrix(&self, row: usize, col: usize) -> Self
where
T: Copy,
{
let mut out = Vec::new();
for (m, row_iter) in self.entries.iter().enumerate() {
if m == row {
continue;
}
let mut new_row = Vec::new();
for (n, entry) in row_iter.iter().enumerate() {
if n != col {
new_row.push(*entry);
}
}
out.push(new_row);
}
Matrix { entries: out }
}
pub fn det(&self) -> Result<T, &'static str>
where
T: Copy,
T: Mul<Output = T>,
T: Sub<Output = T>,
T: Zero,
{
if self.is_square() {
let out = if self.width() == 1 {
self.entries[0][0]
} else {
let n = 0..self.width();
let mut out = T::zero();
for i in n {
if i.is_even() {
out = out + (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
} else {
out = out - (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
}
}
out
};
Ok(out)
} else {
Err("Provided matrix isn't square.")
}
}
/// Creates a zero matrix of a given size.
pub fn zero(height: usize, width: usize) -> Self
where
T: Zero,
{
let mut out = Vec::new();
for _ in 0..height {
let mut new_row = Vec::new();
for _ in 0..width {
new_row.push(T::zero());
}
out.push(new_row);
}
Matrix { entries: out }
}
/// Creates an identity matrix of a given size.
pub fn identity(size: usize) -> Self
where
T: Zero,
T: One,
{
let mut out = Vec::new();
for i in 0..size {
let mut new_row = Vec::new();
for j in 0..size {
if i == j {
new_row.push(T::one());
} else {
new_row.push(T::zero());
}
}
out.push(new_row);
}
Matrix { entries: out }
}
}
impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{:?}", self.entries)
}
}
impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
type Output = Self;
fn mul(self, other: Self) -> Self {
let width = self.width();
if width != other.height() {
panic!("Row length of first matrix must be same as column length of second matrix.");
} else {
let mut out = Vec::new();
for row in self.rows() {
let mut new_row = Vec::new();
for col in other.columns() {
let mut prod = row[0] * col[0];
for i in 1..width {
prod = prod + (row[i] * col[i]);
}
new_row.push(prod)
}
out.push(new_row);
}
Matrix { entries: out }
}
}
}
impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
type Output = Self;
fn add(self, other: Self) -> Self {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] + *entry;
}
}
Matrix { entries: out }
} else {
panic!("Both matrices must be of same dimensions.");
}
}
}
impl<T: Add + Sub<Output = T> + Mul + Copy + Zero> Sub for Matrix<T> {
type Output = Self;
fn sub(self, other: Self) -> Self {
if self.height() == other.height() && self.width() == other.width() {
let mut out = self.entries.clone();
for (i, row) in self.rows().iter().enumerate() {
for (j, entry) in other.rows()[i].iter().enumerate() {
out[i][j] = row[j] - *entry;
}
}
Matrix { entries: out }
} else {
panic!("Both matrices must be of same dimensions.");
}
}
}

35
src/tests.rs Normal file
View file

@ -0,0 +1,35 @@
#[cfg(test)]
use crate::Matrix;
#[test]
fn mul_test() {
let a = Matrix::from(vec![vec![1, 2, 4], vec![3, 4, 9]]).unwrap();
let b = Matrix::from(vec![vec![1, 2], vec![2, 3], vec![5, 1]]).unwrap();
let c = Matrix::from(vec![vec![25, 12], vec![56, 27]]).unwrap();
assert_eq!(a * b, c);
}
#[test]
fn add_sub_test() {
let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
let b = Matrix::from(vec![vec![0, 0, 1], vec![2, 1, 3]]).unwrap();
let c = Matrix::from(vec![vec![1, 2, 4], vec![2, 2, 5]]).unwrap();
let d = Matrix::from(vec![vec![1, 2, 2], vec![-2, 0, -1]]).unwrap();
assert_eq!(a.clone() + b.clone(), c);
assert_eq!(a - b, d);
}
#[test]
fn det_test() {
let a = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5], vec![0, 0, 10]]).unwrap();
let b = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5]]).unwrap();
assert_eq!(a.det(), Ok(30));
assert!(b.det().is_err());
}
#[test]
fn zero_one_test() {
let a = Matrix::from(vec![vec![0, 0, 0], vec![0, 0, 0]]).unwrap();
let b = Matrix::from(vec![vec![1, 0], vec![0, 1]]).unwrap();
assert_eq!(Matrix::<i32>::zero(2, 3), a);
assert_eq!(Matrix::<i32>::identity(2), b);
}