mirror of
https://github.com/SinTan1729/matrix-basic.git
synced 2024-12-25 05:28:36 -06:00
change: Refactoring
This commit is contained in:
parent
9af71d9b72
commit
3d862393d6
3 changed files with 275 additions and 278 deletions
271
src/lib.rs
271
src/lib.rs
|
@ -5,43 +5,252 @@
|
|||
//!
|
||||
//! Sayantan Santra (2023)
|
||||
|
||||
pub mod matrix;
|
||||
use num::{
|
||||
traits::{One, Zero},
|
||||
Integer,
|
||||
};
|
||||
use std::{
|
||||
fmt::{self, Debug, Display, Formatter},
|
||||
ops::{Add, Mul, Sub},
|
||||
result::Result,
|
||||
};
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use matrix::Matrix;
|
||||
#[test]
|
||||
fn mul_test() {
|
||||
let a = Matrix::from(vec![vec![1, 2, 4], vec![3, 4, 9]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![1, 2], vec![2, 3], vec![5, 1]]).unwrap();
|
||||
let c = Matrix::from(vec![vec![25, 12], vec![56, 27]]).unwrap();
|
||||
assert_eq!(a * b, c);
|
||||
mod tests;
|
||||
|
||||
/// A generic matrix struct (over any type with addition, substraction
|
||||
/// and multiplication defined on it).
|
||||
/// Look at [`from`](Self::from()) to see examples.
|
||||
#[derive(PartialEq, Debug, Clone)]
|
||||
pub struct Matrix<T: Mul + Add + Sub> {
|
||||
entries: Vec<Vec<T>>,
|
||||
}
|
||||
|
||||
impl<T: Mul + Add + Sub> Matrix<T> {
|
||||
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
|
||||
/// It'll throw error if all the given rows aren't of the same size.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use matrix::Matrix;
|
||||
/// let m = Matrix::from(vec![vec![1,2,3], vec![4,5,6]]);
|
||||
/// ```
|
||||
/// will create the following matrix:
|
||||
/// ⌈1,2,3⌉
|
||||
/// ⌊4,5,6⌋
|
||||
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, &'static str> {
|
||||
let mut equal_rows = true;
|
||||
let row_len = entries[0].len();
|
||||
for row in &entries {
|
||||
if row_len != row.len() {
|
||||
equal_rows = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if equal_rows {
|
||||
Ok(Matrix { entries })
|
||||
} else {
|
||||
Err("Unequal rows.")
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_sub_test() {
|
||||
let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![0, 0, 1], vec![2, 1, 3]]).unwrap();
|
||||
let c = Matrix::from(vec![vec![1, 2, 4], vec![2, 2, 5]]).unwrap();
|
||||
let d = Matrix::from(vec![vec![1, 2, 2], vec![-2, 0, -1]]).unwrap();
|
||||
assert_eq!(a.clone() + b.clone(), c);
|
||||
assert_eq!(a - b, d);
|
||||
/// Return the height of a matrix.
|
||||
pub fn height(&self) -> usize {
|
||||
self.entries.len()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn det_test() {
|
||||
let a = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5], vec![0, 0, 10]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5]]).unwrap();
|
||||
assert_eq!(a.det(), Ok(30));
|
||||
assert!(b.det().is_err());
|
||||
/// Return the width of a matrix.
|
||||
pub fn width(&self) -> usize {
|
||||
self.entries[0].len()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn zero_one_test() {
|
||||
let a = Matrix::from(vec![vec![0, 0, 0], vec![0, 0, 0]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![1, 0], vec![0, 1]]).unwrap();
|
||||
assert_eq!(Matrix::<i32>::zero(2, 3), a);
|
||||
assert_eq!(Matrix::<i32>::identity(2), b);
|
||||
/// Return the transpose of a matrix.
|
||||
pub fn transpose(&self) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
for i in 0..self.width() {
|
||||
let mut column = Vec::new();
|
||||
for row in &self.entries {
|
||||
column.push(row[i]);
|
||||
}
|
||||
out.push(column)
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
|
||||
/// Return a reference to the rows of a matrix as `&Vec<Vec<T>>`.
|
||||
pub fn rows(&self) -> &Vec<Vec<T>> {
|
||||
&self.entries
|
||||
}
|
||||
|
||||
/// Return the columns of a matrix as `Vec<Vec<T>>`.
|
||||
pub fn columns(&self) -> Vec<Vec<T>>
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
self.transpose().entries
|
||||
}
|
||||
|
||||
/// Return true if a matrix is square and false otherwise.
|
||||
pub fn is_square(&self) -> bool {
|
||||
self.height() == self.width()
|
||||
}
|
||||
|
||||
/// Return a matrix after removing the provided row and column from it.
|
||||
/// Note: Row and column numbers are 0-indexed.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use matrix::Matrix;
|
||||
/// let m = Matrix::from(vec![vec![1,2,3],vec![4,5,6]]).unwrap();
|
||||
/// let n = Matrix::from(vec![vec![5,6]]).unwrap();
|
||||
/// assert_eq!(m.submatrix(0,0),n);
|
||||
/// ```
|
||||
pub fn submatrix(&self, row: usize, col: usize) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
for (m, row_iter) in self.entries.iter().enumerate() {
|
||||
if m == row {
|
||||
continue;
|
||||
}
|
||||
let mut new_row = Vec::new();
|
||||
for (n, entry) in row_iter.iter().enumerate() {
|
||||
if n != col {
|
||||
new_row.push(*entry);
|
||||
}
|
||||
}
|
||||
out.push(new_row);
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
|
||||
pub fn det(&self) -> Result<T, &'static str>
|
||||
where
|
||||
T: Copy,
|
||||
T: Mul<Output = T>,
|
||||
T: Sub<Output = T>,
|
||||
T: Zero,
|
||||
{
|
||||
if self.is_square() {
|
||||
let out = if self.width() == 1 {
|
||||
self.entries[0][0]
|
||||
} else {
|
||||
let n = 0..self.width();
|
||||
let mut out = T::zero();
|
||||
for i in n {
|
||||
if i.is_even() {
|
||||
out = out + (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
|
||||
} else {
|
||||
out = out - (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
|
||||
}
|
||||
}
|
||||
out
|
||||
};
|
||||
Ok(out)
|
||||
} else {
|
||||
Err("Provided matrix isn't square.")
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a zero matrix of a given size.
|
||||
pub fn zero(height: usize, width: usize) -> Self
|
||||
where
|
||||
T: Zero,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
for _ in 0..height {
|
||||
let mut new_row = Vec::new();
|
||||
for _ in 0..width {
|
||||
new_row.push(T::zero());
|
||||
}
|
||||
out.push(new_row);
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
|
||||
/// Creates an identity matrix of a given size.
|
||||
pub fn identity(size: usize) -> Self
|
||||
where
|
||||
T: Zero,
|
||||
T: One,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
for i in 0..size {
|
||||
let mut new_row = Vec::new();
|
||||
for j in 0..size {
|
||||
if i == j {
|
||||
new_row.push(T::one());
|
||||
} else {
|
||||
new_row.push(T::zero());
|
||||
}
|
||||
}
|
||||
out.push(new_row);
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
|
||||
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
||||
write!(f, "{:?}", self.entries)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
|
||||
type Output = Self;
|
||||
fn mul(self, other: Self) -> Self {
|
||||
let width = self.width();
|
||||
if width != other.height() {
|
||||
panic!("Row length of first matrix must be same as column length of second matrix.");
|
||||
} else {
|
||||
let mut out = Vec::new();
|
||||
for row in self.rows() {
|
||||
let mut new_row = Vec::new();
|
||||
for col in other.columns() {
|
||||
let mut prod = row[0] * col[0];
|
||||
for i in 1..width {
|
||||
prod = prod + (row[i] * col[i]);
|
||||
}
|
||||
new_row.push(prod)
|
||||
}
|
||||
out.push(new_row);
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
|
||||
type Output = Self;
|
||||
fn add(self, other: Self) -> Self {
|
||||
if self.height() == other.height() && self.width() == other.width() {
|
||||
let mut out = self.entries.clone();
|
||||
for (i, row) in self.rows().iter().enumerate() {
|
||||
for (j, entry) in other.rows()[i].iter().enumerate() {
|
||||
out[i][j] = row[j] + *entry;
|
||||
}
|
||||
}
|
||||
Matrix { entries: out }
|
||||
} else {
|
||||
panic!("Both matrices must be of same dimensions.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Add + Sub<Output = T> + Mul + Copy + Zero> Sub for Matrix<T> {
|
||||
type Output = Self;
|
||||
fn sub(self, other: Self) -> Self {
|
||||
if self.height() == other.height() && self.width() == other.width() {
|
||||
let mut out = self.entries.clone();
|
||||
for (i, row) in self.rows().iter().enumerate() {
|
||||
for (j, entry) in other.rows()[i].iter().enumerate() {
|
||||
out[i][j] = row[j] - *entry;
|
||||
}
|
||||
}
|
||||
Matrix { entries: out }
|
||||
} else {
|
||||
panic!("Both matrices must be of same dimensions.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
247
src/matrix.rs
247
src/matrix.rs
|
@ -1,247 +0,0 @@
|
|||
use num::{
|
||||
traits::{One, Zero},
|
||||
Integer,
|
||||
};
|
||||
use std::{
|
||||
fmt::{self, Debug, Display, Formatter},
|
||||
ops::{Add, Mul, Sub},
|
||||
result::Result,
|
||||
};
|
||||
|
||||
/// A generic matrix struct (over any type with addition, substraction
|
||||
/// and multiplication defined on it).
|
||||
/// Look at [`from`](Self::from()) to see examples.
|
||||
#[derive(PartialEq, Debug, Clone)]
|
||||
pub struct Matrix<T: Mul + Add + Sub> {
|
||||
entries: Vec<Vec<T>>,
|
||||
}
|
||||
|
||||
impl<T: Mul + Add + Sub> Matrix<T> {
|
||||
/// Creates a matrix from given 2D "array" in a `Vec<Vec<T>>` form.
|
||||
/// It'll throw error if all the given rows aren't of the same size.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use matrix::matrix::Matrix;
|
||||
/// let m = Matrix::from(vec![vec![1,2,3], vec![4,5,6]]);
|
||||
/// ```
|
||||
/// will create the following matrix:
|
||||
/// ⌈1,2,3⌉
|
||||
/// ⌊4,5,6⌋
|
||||
pub fn from(entries: Vec<Vec<T>>) -> Result<Matrix<T>, &'static str> {
|
||||
let mut equal_rows = true;
|
||||
let row_len = entries[0].len();
|
||||
for row in &entries {
|
||||
if row_len != row.len() {
|
||||
equal_rows = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if equal_rows {
|
||||
Ok(Matrix { entries })
|
||||
} else {
|
||||
Err("Unequal rows.")
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the height of a matrix.
|
||||
pub fn height(&self) -> usize {
|
||||
self.entries.len()
|
||||
}
|
||||
|
||||
/// Return the width of a matrix.
|
||||
pub fn width(&self) -> usize {
|
||||
self.entries[0].len()
|
||||
}
|
||||
|
||||
/// Return the transpose of a matrix.
|
||||
pub fn transpose(&self) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
for i in 0..self.width() {
|
||||
let mut column = Vec::new();
|
||||
for row in &self.entries {
|
||||
column.push(row[i]);
|
||||
}
|
||||
out.push(column)
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
|
||||
/// Return a reference to the rows of a matrix as `&Vec<Vec<T>>`.
|
||||
pub fn rows(&self) -> &Vec<Vec<T>> {
|
||||
&self.entries
|
||||
}
|
||||
|
||||
/// Return the columns of a matrix as `Vec<Vec<T>>`.
|
||||
pub fn columns(&self) -> Vec<Vec<T>>
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
self.transpose().entries
|
||||
}
|
||||
|
||||
/// Return true if a matrix is square and false otherwise.
|
||||
pub fn is_square(&self) -> bool {
|
||||
self.height() == self.width()
|
||||
}
|
||||
|
||||
/// Return a matrix after removing the provided row and column from it.
|
||||
/// Note: Row and column numbers are 0-indexed.
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use matrix::matrix::Matrix;
|
||||
/// let m = Matrix::from(vec![vec![1,2,3],vec![4,5,6]]).unwrap();
|
||||
/// let n = Matrix::from(vec![vec![5,6]]).unwrap();
|
||||
/// assert_eq!(m.submatrix(0,0),n);
|
||||
/// ```
|
||||
pub fn submatrix(&self, row: usize, col: usize) -> Self
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
for (m, row_iter) in self.entries.iter().enumerate() {
|
||||
if m == row {
|
||||
continue;
|
||||
}
|
||||
let mut new_row = Vec::new();
|
||||
for (n, entry) in row_iter.iter().enumerate() {
|
||||
if n != col {
|
||||
new_row.push(*entry);
|
||||
}
|
||||
}
|
||||
out.push(new_row);
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
|
||||
pub fn det(&self) -> Result<T, &'static str>
|
||||
where
|
||||
T: Copy,
|
||||
T: Mul<Output = T>,
|
||||
T: Sub<Output = T>,
|
||||
T: Zero,
|
||||
{
|
||||
if self.is_square() {
|
||||
let out = if self.width() == 1 {
|
||||
self.entries[0][0]
|
||||
} else {
|
||||
let n = 0..self.width();
|
||||
let mut out = T::zero();
|
||||
for i in n {
|
||||
if i.is_even() {
|
||||
out = out + (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
|
||||
} else {
|
||||
out = out - (self.entries[0][i] * self.submatrix(0, i).det().unwrap());
|
||||
}
|
||||
}
|
||||
out
|
||||
};
|
||||
Ok(out)
|
||||
} else {
|
||||
Err("Provided matrix isn't square.")
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a zero matrix of a given size.
|
||||
pub fn zero(height: usize, width: usize) -> Self
|
||||
where
|
||||
T: Zero,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
for _ in 0..height {
|
||||
let mut new_row = Vec::new();
|
||||
for _ in 0..width {
|
||||
new_row.push(T::zero());
|
||||
}
|
||||
out.push(new_row);
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
|
||||
/// Creates an identity matrix of a given size.
|
||||
pub fn identity(size: usize) -> Self
|
||||
where
|
||||
T: Zero,
|
||||
T: One,
|
||||
{
|
||||
let mut out = Vec::new();
|
||||
for i in 0..size {
|
||||
let mut new_row = Vec::new();
|
||||
for j in 0..size {
|
||||
if i == j {
|
||||
new_row.push(T::one());
|
||||
} else {
|
||||
new_row.push(T::zero());
|
||||
}
|
||||
}
|
||||
out.push(new_row);
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Debug + Mul + Add + Sub> Display for Matrix<T> {
|
||||
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
||||
write!(f, "{:?}", self.entries)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Mul<Output = T> + Add + Sub + Copy + Zero> Mul for Matrix<T> {
|
||||
type Output = Self;
|
||||
fn mul(self, other: Self) -> Self {
|
||||
let width = self.width();
|
||||
if width != other.height() {
|
||||
panic!("Row length of first matrix must be same as column length of second matrix.");
|
||||
} else {
|
||||
let mut out = Vec::new();
|
||||
for row in self.rows() {
|
||||
let mut new_row = Vec::new();
|
||||
for col in other.columns() {
|
||||
let mut prod = row[0] * col[0];
|
||||
for i in 1..width {
|
||||
prod = prod + (row[i] * col[i]);
|
||||
}
|
||||
new_row.push(prod)
|
||||
}
|
||||
out.push(new_row);
|
||||
}
|
||||
Matrix { entries: out }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Add<Output = T> + Sub + Mul + Copy + Zero> Add for Matrix<T> {
|
||||
type Output = Self;
|
||||
fn add(self, other: Self) -> Self {
|
||||
if self.height() == other.height() && self.width() == other.width() {
|
||||
let mut out = self.entries.clone();
|
||||
for (i, row) in self.rows().iter().enumerate() {
|
||||
for (j, entry) in other.rows()[i].iter().enumerate() {
|
||||
out[i][j] = row[j] + *entry;
|
||||
}
|
||||
}
|
||||
Matrix { entries: out }
|
||||
} else {
|
||||
panic!("Both matrices must be of same dimensions.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Add + Sub<Output = T> + Mul + Copy + Zero> Sub for Matrix<T> {
|
||||
type Output = Self;
|
||||
fn sub(self, other: Self) -> Self {
|
||||
if self.height() == other.height() && self.width() == other.width() {
|
||||
let mut out = self.entries.clone();
|
||||
for (i, row) in self.rows().iter().enumerate() {
|
||||
for (j, entry) in other.rows()[i].iter().enumerate() {
|
||||
out[i][j] = row[j] - *entry;
|
||||
}
|
||||
}
|
||||
Matrix { entries: out }
|
||||
} else {
|
||||
panic!("Both matrices must be of same dimensions.");
|
||||
}
|
||||
}
|
||||
}
|
35
src/tests.rs
Normal file
35
src/tests.rs
Normal file
|
@ -0,0 +1,35 @@
|
|||
#[cfg(test)]
|
||||
use crate::Matrix;
|
||||
#[test]
|
||||
fn mul_test() {
|
||||
let a = Matrix::from(vec![vec![1, 2, 4], vec![3, 4, 9]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![1, 2], vec![2, 3], vec![5, 1]]).unwrap();
|
||||
let c = Matrix::from(vec![vec![25, 12], vec![56, 27]]).unwrap();
|
||||
assert_eq!(a * b, c);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_sub_test() {
|
||||
let a = Matrix::from(vec![vec![1, 2, 3], vec![0, 1, 2]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![0, 0, 1], vec![2, 1, 3]]).unwrap();
|
||||
let c = Matrix::from(vec![vec![1, 2, 4], vec![2, 2, 5]]).unwrap();
|
||||
let d = Matrix::from(vec![vec![1, 2, 2], vec![-2, 0, -1]]).unwrap();
|
||||
assert_eq!(a.clone() + b.clone(), c);
|
||||
assert_eq!(a - b, d);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn det_test() {
|
||||
let a = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5], vec![0, 0, 10]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![1, 2, 0], vec![0, 3, 5]]).unwrap();
|
||||
assert_eq!(a.det(), Ok(30));
|
||||
assert!(b.det().is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn zero_one_test() {
|
||||
let a = Matrix::from(vec![vec![0, 0, 0], vec![0, 0, 0]]).unwrap();
|
||||
let b = Matrix::from(vec![vec![1, 0], vec![0, 1]]).unwrap();
|
||||
assert_eq!(Matrix::<i32>::zero(2, 3), a);
|
||||
assert_eq!(Matrix::<i32>::identity(2), b);
|
||||
}
|
Loading…
Reference in a new issue