mirror of
https://github.com/SinTan1729/lean-talk-sp24.git
synced 2024-12-25 05:18:37 -06:00
240 lines
6.9 KiB
Text
240 lines
6.9 KiB
Text
import Mathlib.Data.Nat.Prime
|
||
import Mathlib.Algebra.BigOperators.Order
|
||
import Mathlib.Tactic
|
||
import Mathlib.Tactic.IntervalCases
|
||
|
||
open BigOperators
|
||
|
||
theorem two_le {m : ℕ} (h0 : m ≠ 0) (h1 : m ≠ 1) : 2 ≤ m := by
|
||
have : m > 0 := Nat.pos_of_ne_zero h0
|
||
have : m >= 1 := this
|
||
have h1 : 1 ≠ m := Ne.symm h1
|
||
change ¬_ = _ at h1
|
||
have : m > 1 := Nat.lt_of_le_of_ne this h1
|
||
exact this
|
||
|
||
theorem exists_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ p : Nat, p.Prime ∧ p ∣ n := by
|
||
by_cases np : n.Prime
|
||
· use n, np
|
||
induction' n using Nat.strong_induction_on with n ih
|
||
rw [Nat.prime_def_lt] at np
|
||
push_neg at np
|
||
rcases np h with ⟨m, mltn, mdvdn, mne1⟩
|
||
have : m ≠ 0 := by
|
||
intro mz
|
||
rw [mz, zero_dvd_iff] at mdvdn
|
||
-- linarith
|
||
rw [mz, mdvdn] at mltn
|
||
contradiction
|
||
have mgt2 : 2 ≤ m := two_le this mne1
|
||
by_cases mp : m.Prime
|
||
· use m, mp
|
||
. rcases ih m mltn mgt2 mp with ⟨p, pp, pdvd⟩
|
||
use p, pp
|
||
exact Nat.dvd_trans pdvd mdvdn
|
||
|
||
theorem primes_infinite : ∀ n, ∃ p > n, Nat.Prime p := by
|
||
intro n
|
||
have : 2 ≤ Nat.factorial (n + 1) + 1 := by
|
||
apply Nat.succ_le_succ
|
||
apply Nat.succ_le_of_lt
|
||
apply Nat.factorial_pos
|
||
rcases exists_prime_factor this with ⟨p, pp, pdvd⟩
|
||
refine' ⟨p, _, pp⟩
|
||
show p > n
|
||
by_contra ple
|
||
push_neg at ple
|
||
have : p ∣ Nat.factorial (n + 1) := by
|
||
apply Nat.dvd_factorial
|
||
apply pp.pos
|
||
linarith
|
||
have : p ∣ 1 := by
|
||
convert Nat.dvd_sub' pdvd this
|
||
simp
|
||
show False
|
||
have ple1 : p ≤ 1 := Nat.le_of_dvd (Nat.lt_succ_self 0) this
|
||
have plt1 : p > 1 := pp.one_lt
|
||
linarith
|
||
|
||
open Finset
|
||
|
||
section
|
||
variable {α : Type _} [DecidableEq α] (r s t : Finset α)
|
||
|
||
example : r ∩ (s ∪ t) ⊆ r ∩ s ∪ r ∩ t := by
|
||
rw [subset_iff]
|
||
intro x
|
||
rw [mem_inter, mem_union, mem_union, mem_inter, mem_inter]
|
||
tauto
|
||
|
||
example : r ∩ (s ∪ t) ⊆ r ∩ s ∪ r ∩ t := by
|
||
simp [subset_iff]
|
||
intro x
|
||
tauto
|
||
|
||
example : r ∩ s ∪ r ∩ t ⊆ r ∩ (s ∪ t) := by
|
||
simp [subset_iff]
|
||
intro x
|
||
tauto
|
||
|
||
example : r ∩ s ∪ r ∩ t = r ∩ (s ∪ t) := by
|
||
ext x
|
||
simp
|
||
tauto
|
||
|
||
end
|
||
|
||
theorem _root_.Nat.Prime.eq_of_dvd_of_prime {p q : ℕ}
|
||
(prime_p : Nat.Prime p) (prime_q : Nat.Prime q) (h : p ∣ q) :
|
||
p = q := by
|
||
cases prime_q.eq_one_or_self_of_dvd _ h
|
||
· linarith [prime_p.two_le]
|
||
assumption
|
||
|
||
theorem mem_of_dvd_prod_primes {s : Finset ℕ} {p : ℕ} (prime_p : p.Prime) :
|
||
(∀ n ∈ s, Nat.Prime n) → (p ∣ ∏ n in s, n) → p ∈ s := by
|
||
intro h₀ h₁
|
||
induction' s using Finset.induction_on with a s ans ih
|
||
· simp at h₁
|
||
linarith [prime_p.two_le]
|
||
simp [Finset.prod_insert ans, prime_p.dvd_mul] at h₀ h₁
|
||
rw [mem_insert]
|
||
cases' h₁ with h₁ h₁
|
||
· left
|
||
exact prime_p.eq_of_dvd_of_prime h₀.1 h₁
|
||
right
|
||
exact ih h₀.2 h₁
|
||
|
||
theorem primes_infinite' : ∀ s : Finset Nat, ∃ p, Nat.Prime p ∧ p ∉ s := by
|
||
intro s
|
||
by_contra h
|
||
push_neg at h
|
||
set s' := s.filter Nat.Prime with s'_def
|
||
have mem_s' : ∀ {n : ℕ}, n ∈ s' ↔ n.Prime := by
|
||
intro n
|
||
simp [s'_def]
|
||
apply h
|
||
have : 2 ≤ (∏ i in s', i) + 1 := by
|
||
apply Nat.succ_le_succ
|
||
apply Nat.succ_le_of_lt
|
||
apply Finset.prod_pos
|
||
intro n ns'
|
||
apply (mem_s'.mp ns').pos
|
||
rcases exists_prime_factor this with ⟨p, pp, pdvd⟩
|
||
have : p ∣ ∏ i in s', i := by
|
||
apply dvd_prod_of_mem
|
||
rw [mem_s']
|
||
apply pp
|
||
have : p ∣ 1 := by
|
||
convert Nat.dvd_sub' pdvd this
|
||
simp
|
||
show False
|
||
have := Nat.le_of_dvd zero_lt_one this
|
||
linarith [pp.two_le]
|
||
|
||
theorem bounded_of_ex_finset (Q : ℕ → Prop) :
|
||
(∃ s : Finset ℕ, ∀ k, Q k → k ∈ s) → ∃ n, ∀ k, Q k → k < n := by
|
||
rintro ⟨s, hs⟩
|
||
use s.sup id + 1
|
||
intro k Qk
|
||
apply Nat.lt_succ_of_le
|
||
show id k ≤ s.sup id
|
||
apply le_sup (hs k Qk)
|
||
|
||
theorem ex_finset_of_bounded (Q : ℕ → Prop) [DecidablePred Q] :
|
||
(∃ n, ∀ k, Q k → k ≤ n) → ∃ s : Finset ℕ, ∀ k, Q k ↔ k ∈ s := by
|
||
rintro ⟨n, hn⟩
|
||
use (range (n + 1)).filter Q
|
||
intro k
|
||
simp [Nat.lt_succ_iff]
|
||
exact hn k
|
||
|
||
theorem mod_4_eq_3_or_mod_4_eq_3 {m n : ℕ} (h : m * n % 4 = 3) : m % 4 = 3 ∨ n % 4 = 3 := by
|
||
revert h
|
||
rw [Nat.mul_mod]
|
||
have : m % 4 < 4 := Nat.mod_lt m (by norm_num)
|
||
interval_cases hm : m % 4 <;> simp [hm]
|
||
have : n % 4 < 4 := Nat.mod_lt n (by norm_num)
|
||
interval_cases hn : n % 4 <;> simp [hn]
|
||
|
||
theorem two_le_of_mod_4_eq_3 {n : ℕ} (h : n % 4 = 3) : 2 ≤ n := by
|
||
apply two_le <;>
|
||
· intro neq
|
||
rw [neq] at h
|
||
norm_num at h
|
||
|
||
theorem aux {m n : ℕ} (h₀ : m ∣ n) (h₁ : 2 ≤ m) (h₂ : m < n) : n / m ∣ n ∧ n / m < n := by
|
||
constructor
|
||
· exact Nat.div_dvd_of_dvd h₀
|
||
exact Nat.div_lt_self (lt_of_le_of_lt (zero_le _) h₂) h₁
|
||
|
||
theorem exists_prime_factor_mod_4_eq_3 {n : Nat} (h : n % 4 = 3) :
|
||
∃ p : Nat, p.Prime ∧ p ∣ n ∧ p % 4 = 3 := by
|
||
by_cases np : n.Prime
|
||
· use n
|
||
induction' n using Nat.strong_induction_on with n ih
|
||
rw [Nat.prime_def_lt] at np
|
||
push_neg at np
|
||
rcases np (two_le_of_mod_4_eq_3 h) with ⟨m, mltn, mdvdn, mne1⟩
|
||
have mge2 : 2 ≤ m := by
|
||
apply two_le _ mne1
|
||
intro mz
|
||
rw [mz, zero_dvd_iff] at mdvdn
|
||
linarith
|
||
have neq : m * (n / m) = n := Nat.mul_div_cancel' mdvdn
|
||
have : m % 4 = 3 ∨ n / m % 4 = 3 := by
|
||
apply mod_4_eq_3_or_mod_4_eq_3
|
||
rw [neq, h]
|
||
cases' this with h1 h1
|
||
· by_cases mp : m.Prime
|
||
· use m
|
||
rcases ih m mltn h1 mp with ⟨p, pp, pdvd, p4eq⟩
|
||
use p
|
||
exact ⟨pp, pdvd.trans mdvdn, p4eq⟩
|
||
obtain ⟨nmdvdn, nmltn⟩ := aux mdvdn mge2 mltn
|
||
by_cases nmp : (n / m).Prime
|
||
· use n / m
|
||
rcases ih (n / m) nmltn h1 nmp with ⟨p, pp, pdvd, p4eq⟩
|
||
use p
|
||
exact ⟨pp, pdvd.trans nmdvdn, p4eq⟩
|
||
|
||
theorem primes_mod_4_eq_3_infinite : ∀ n, ∃ p > n, Nat.Prime p ∧ p % 4 = 3 := by
|
||
by_contra h
|
||
push_neg at h
|
||
cases' h with n hn
|
||
have : ∃ s : Finset Nat, ∀ p : ℕ, p.Prime ∧ p % 4 = 3 ↔ p ∈ s := by
|
||
apply ex_finset_of_bounded
|
||
use n
|
||
contrapose! hn
|
||
rcases hn with ⟨p, ⟨pp, p4⟩, pltn⟩
|
||
exact ⟨p, pltn, pp, p4⟩
|
||
cases' this with s hs
|
||
have h₁ : ((4 * ∏ i in erase s 3, i) + 3) % 4 = 3 := by
|
||
rw [add_comm, Nat.add_mul_mod_self_left]
|
||
norm_num
|
||
rcases exists_prime_factor_mod_4_eq_3 h₁ with ⟨p, pp, pdvd, p4eq⟩
|
||
have ps : p ∈ s := by
|
||
rw [← hs p]
|
||
exact ⟨pp, p4eq⟩
|
||
have pne3 : p ≠ 3 := by
|
||
intro peq
|
||
rw [peq, ← Nat.dvd_add_iff_left (dvd_refl 3)] at pdvd
|
||
rw [Nat.prime_three.dvd_mul] at pdvd
|
||
norm_num at pdvd
|
||
have : 3 ∈ s.erase 3 := by
|
||
apply mem_of_dvd_prod_primes Nat.prime_three _ pdvd
|
||
intro n
|
||
simp [← hs n]
|
||
tauto
|
||
simp at this
|
||
have : p ∣ 4 * ∏ i in erase s 3, i := by
|
||
apply dvd_trans _ (dvd_mul_left _ _)
|
||
apply dvd_prod_of_mem
|
||
simp
|
||
constructor <;> assumption
|
||
have : p ∣ 3 := by
|
||
convert Nat.dvd_sub' pdvd this
|
||
simp
|
||
have : p = 3 := by
|
||
apply pp.eq_of_dvd_of_prime Nat.prime_three this
|
||
contradiction
|