import Mathlib.Tactic open Finset theorem sum_first_n {n : ℕ} : 2 * (range (n + 1)).sum id = n * (n + 1) := by induction' n with d hd · simp · rw [sum_range_succ, mul_add, hd, id.def, Nat.succ_eq_add_one] linarith open Set example {α : Type _} {s t : Set α} : s ∪ s ∩ t = s := by ext x; constructor rintro (xs | xsti) · trivial · exact And.left xsti exact Or.inl -- Examples of definitions def IsEven (n : ℕ) : Bool := (n%2) = 0 def IsOdd (n : ℕ) : Bool := ¬IsEven n #eval IsEven 9 #eval IsOdd 9 example {n : ℕ} : IsOdd n = ((n%2) = 1) := by apply iff_iff_eq.mp constructor -- <;> · intro h unfold IsOdd IsEven at h simp at h trivial · intro h unfold IsOdd IsEven simp trivial theorem nat_odd_or_even {n : ℕ} : (IsEven n)∨(IsOdd n):= by apply or_iff_not_imp_left.mpr intro h unfold IsOdd simp at * trivial