import Mathlib.Tactic open Finset theorem sum_first_n {n : ℕ} : 2 * (range (n + 1)).sum id = n * (n + 1) := by induction' n with d hd · simp · rw [sum_range_succ, mul_add, hd, id.def, Nat.succ_eq_add_one] linarith open Set variable {α : Type _} variable {s t u : Set α} example : s ∪ s ∩ t = s := by ext x; constructor rintro (xs | xsti) · trivial · exact And.left xsti exact Or.inl