mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
62 lines
No EOL
1.9 KiB
Text
62 lines
No EOL
1.9 KiB
Text
import Mathlib.Order.KrullDimension
|
||
import Mathlib.Order.JordanHolder
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
import Mathlib.Order.Height
|
||
import Mathlib.RingTheory.Noetherian
|
||
import CommAlg.krull
|
||
|
||
variable (R : Type _) [CommRing R] [IsNoetherianRing R]
|
||
|
||
lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R)
|
||
(h : ∀(p : PrimeSpectrum R), p < q → Ideal.height p ≤ n - 1) : Ideal.height q ≤ n := by
|
||
sorry
|
||
|
||
|
||
theorem height_le_one_of_minimal_over_principle (p : PrimeSpectrum R) (x : R):
|
||
p ∈ minimals (· < ·) {p | x ∈ p.asIdeal} → Ideal.height p ≤ 1 := by
|
||
intro h
|
||
apply height_le_of_gt_height_lt _ p
|
||
intro q qlep
|
||
by_contra hcontr
|
||
push_neg at hcontr
|
||
simp only [le_refl, tsub_eq_zero_of_le] at hcontr
|
||
|
||
sorry
|
||
|
||
#check (_ : Ideal R) ^ (_ : ℕ)
|
||
#synth Pow (Ideal R) (ℕ)
|
||
|
||
def symbolicIdeal(Q : Ideal R) {hin : Q.IsPrime} (I : Ideal R) : Ideal R where
|
||
carrier := {r : R | ∃ s : R, s ∉ Q ∧ s * r ∈ I}
|
||
zero_mem' := by
|
||
simp only [Set.mem_setOf_eq, mul_zero, Submodule.zero_mem, and_true]
|
||
use 1
|
||
rw [←Q.ne_top_iff_one]
|
||
exact hin.ne_top
|
||
add_mem' := by
|
||
rintro a b ⟨sa, hsa1, hsa2⟩ ⟨sb, hsb1, hsb2⟩
|
||
use sa * sb
|
||
constructor
|
||
. intro h
|
||
cases hin.mem_or_mem h <;> contradiction
|
||
ring_nf
|
||
apply I.add_mem --<;> simp only [I.mul_mem_left, hsa2, hsb2]
|
||
. rw [mul_comm sa, mul_assoc]
|
||
exact I.mul_mem_left sb hsa2
|
||
. rw [mul_assoc]
|
||
exact I.mul_mem_left sa hsb2
|
||
smul_mem' := by
|
||
intro c x
|
||
dsimp
|
||
rintro ⟨s, hs1, hs2⟩
|
||
use s
|
||
constructor; exact hs1
|
||
rw [←mul_assoc, mul_comm s, mul_assoc]
|
||
exact Ideal.mul_mem_left _ _ hs2
|
||
|
||
protected lemma LocalRing.height_le_one_of_minimal_over_principle
|
||
[LocalRing R] (q : PrimeSpectrum R) {x : R}
|
||
(h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) :
|
||
q = closedPoint R ∨ Ideal.height q = 0 := by
|
||
|
||
sorry |