mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
78 lines
3 KiB
Text
78 lines
3 KiB
Text
import CommAlg.krull
|
|
import Mathlib.RingTheory.Ideal.Operations
|
|
import Mathlib.Order.Height
|
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
|
|
namespace Ideal
|
|
|
|
/-- The ring of polynomials over a field has dimension one. -/
|
|
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
|
rw [le_antisymm_iff]
|
|
let X := @Polynomial.X K _
|
|
constructor
|
|
· unfold krullDim
|
|
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
|
intro I
|
|
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
|
by_cases I = ⊥
|
|
· rw [← height_bot_iff_bot] at h
|
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
|
rw [h]
|
|
exact bot_le
|
|
· push_neg at h
|
|
have : I.asIdeal ≠ ⊥ := by
|
|
by_contra a
|
|
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
|
contradiction
|
|
have maxI := IsPrime.to_maximal_ideal this
|
|
have singleton : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
|
intro P
|
|
constructor
|
|
· intro H
|
|
simp only [Set.mem_setOf_eq] at H
|
|
by_contra x
|
|
push_neg at x
|
|
have : P.asIdeal ≠ ⊥ := by
|
|
by_contra a
|
|
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
|
contradiction
|
|
have maxP := IsPrime.to_maximal_ideal this
|
|
have IneTop := IsMaximal.ne_top maxI
|
|
have : P ≤ I := le_of_lt H
|
|
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
|
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
|
have : P = I := PrimeSpectrum.ext P I this
|
|
replace H : P ≠ I := ne_of_lt H
|
|
contradiction
|
|
· intro pBot
|
|
simp only [Set.mem_setOf_eq, pBot]
|
|
exact lt_of_le_of_ne bot_le h.symm
|
|
replace singleton : {J | J < I} = {⊥} := Set.ext singleton
|
|
unfold height
|
|
sorry
|
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
|
· obtain ⟨I, h⟩ := this
|
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
|
exact le_trans h this
|
|
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
|
have : IsPrime (span {X}) := by
|
|
refine (span_singleton_prime ?hp).mpr primeX
|
|
exact Polynomial.X_ne_zero
|
|
let P := PrimeSpectrum.mk (span {X}) this
|
|
unfold height
|
|
use P
|
|
have : ⊥ ∈ {J | J < P} := by
|
|
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
|
suffices : P.asIdeal ≠ ⊥
|
|
· by_contra x
|
|
rw [PrimeSpectrum.ext_iff] at x
|
|
contradiction
|
|
by_contra x
|
|
simp only [span_singleton_eq_bot] at x
|
|
have := @Polynomial.X_ne_zero K _ _
|
|
contradiction
|
|
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
|
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
|