mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
79 lines
2.4 KiB
Text
79 lines
2.4 KiB
Text
import Mathlib.RingTheory.Ideal.Basic
|
||
import Mathlib.RingTheory.JacobsonIdeal
|
||
import Mathlib.RingTheory.Noetherian
|
||
import Mathlib.Order.KrullDimension
|
||
import Mathlib.RingTheory.Artinian
|
||
import Mathlib.RingTheory.Ideal.Quotient
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||
import Mathlib.Data.Finite.Defs
|
||
|
||
import Mathlib.Order.Height
|
||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||
import Mathlib.RingTheory.Localization.AtPrime
|
||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||
|
||
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
||
namespace Ideal
|
||
|
||
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R)
|
||
|
||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||
|
||
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||
-- copy ends
|
||
|
||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by
|
||
|
||
|
||
variable {R : Type _} [CommRing R]
|
||
|
||
-- Repeats the definition by Monalisa
|
||
noncomputable def length : krullDim (Submodule _ _)
|
||
|
||
|
||
-- The following is Stacks Lemma 10.60.5
|
||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
|
||
|
||
sorry
|
||
|
||
#check IsNoetherianRing
|
||
|
||
#check krullDim
|
||
|
||
-- Repeats the definition of the length of a module by Monalisa
|
||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||
|
||
noncomputable def length := krullDim (Submodule R M)
|
||
|
||
#check length
|
||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
||
|
||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||
|
||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||
lemma Jacobson_of_Artinian_is_nilpotent : Is
|
||
|
||
|
||
|
||
-- how to use namespace
|
||
|
||
namespace something
|
||
|
||
end something
|
||
|
||
open something
|
||
|
||
-- The following is Stacks Lemma 10.53.6
|
||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
||
|
||
|
||
|
||
|
||
|