mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
67 lines
2.1 KiB
Text
67 lines
2.1 KiB
Text
import Mathlib.RingTheory.Ideal.Basic
|
||
import Mathlib.Order.Height
|
||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||
import Mathlib.RingTheory.Ideal.Quotient
|
||
import Mathlib.RingTheory.Localization.AtPrime
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||
-- import Mathlib.Data.ENat.Lattice
|
||
-- import Mathlib.Order.OrderIsoNat
|
||
-- import Mathlib.Tactic.TFAE
|
||
|
||
namespace Ideal
|
||
|
||
-- def foo : List Nat := [1, 2, 3, 4, 5]
|
||
|
||
-- #check List.Chain'
|
||
|
||
-- example : List.Chain' (· < ·) foo := by
|
||
-- repeat { constructor; norm_num }
|
||
|
||
|
||
|
||
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
||
constructor
|
||
|
||
|
||
|
||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||
|
||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||
|
||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||
|
||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||
|
||
variable {K : Type _} [Field K]
|
||
|
||
lemma dim_field_eq_zero : krullDim K = 0 := by
|
||
have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||
constructor
|
||
· intro primeP
|
||
obtain T := eq_bot_or_top P
|
||
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
||
tauto
|
||
· intro botP
|
||
rw [botP]
|
||
exact bot_prime
|
||
unfold krullDim
|
||
have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by
|
||
intro P
|
||
unfold height
|
||
simp
|
||
by_contra spec
|
||
change _ ≠ _ at spec
|
||
rw [← Set.nonempty_iff_ne_empty] at spec
|
||
obtain ⟨J, JlP : J < P⟩ := spec
|
||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||
rw [prime_bot] at P0 J0
|
||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||
have JeqP : J = P := PrimeSpectrum.ext J P this
|
||
have JneqP : J ≠ P := ne_of_lt JlP
|
||
contradiction
|
||
simp [height_zero]
|