mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
259 lines
11 KiB
Text
259 lines
11 KiB
Text
import Mathlib.Order.KrullDimension
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
import Mathlib.Algebra.Module.GradedModule
|
||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||
import Mathlib.RingTheory.Artinian
|
||
import Mathlib.Order.Height
|
||
|
||
|
||
-- Setting for "library_search"
|
||
set_option maxHeartbeats 0
|
||
macro "ls" : tactic => `(tactic|library_search)
|
||
|
||
-- New tactic "obviously"
|
||
macro "obviously" : tactic =>
|
||
`(tactic| (
|
||
first
|
||
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||
| simp; done; dbg_trace "it was simp"
|
||
| tauto; done; dbg_trace "it was tauto"
|
||
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||
| rfl; done; dbg_trace "it was rfl"
|
||
| norm_num; done; dbg_trace "it was norm_num"
|
||
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||
-- | gcongr; done
|
||
| ring; done; dbg_trace "it was ring"
|
||
| trivial; done; dbg_trace "it was trivial"
|
||
-- | nlinarith; done
|
||
| fail "No, this is not obvious."))
|
||
|
||
|
||
|
||
open GradedMonoid.GSmul
|
||
open DirectSum
|
||
|
||
|
||
|
||
-- @Definitions (to be classified)
|
||
section
|
||
|
||
-- Definition of polynomail of type d
|
||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||
noncomputable def length ( A : Type _) (M : Type _)
|
||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||
|
||
-- Make instance of M_i being an R_0-module
|
||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||
|
||
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
||
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
||
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
||
refine' of_eq_of_gradedMonoid_eq _
|
||
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
||
|
||
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
||
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
||
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
||
|
||
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
||
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||
|
||
|
||
-- Definition of a Hilbert function of a graded module
|
||
section
|
||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||
[DirectSum.GCommRing 𝒜]
|
||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||
|
||
noncomputable def dimensionring { A: Type _}
|
||
[CommRing A] := krullDim (PrimeSpectrum A)
|
||
|
||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||
end
|
||
|
||
|
||
|
||
-- Definition of homogeneous ideal
|
||
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _)
|
||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||
(I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ )
|
||
⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
||
|
||
-- Definition of homogeneous prime ideal
|
||
def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||
|
||
-- Definition of homogeneous maximal ideal
|
||
def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||
|
||
--theorem monotone_stabilizes_iff_noetherian :
|
||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||
|
||
|
||
instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] :
|
||
Algebra (𝒜 0) (⨁ i, 𝒜 i) :=
|
||
Algebra.ofModule'
|
||
(by
|
||
intro r x
|
||
sorry)
|
||
(by
|
||
intro r x
|
||
sorry)
|
||
|
||
|
||
|
||
class StandardGraded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||
gen_in_first_piece :
|
||
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
||
|
||
|
||
-- Each component of a graded ring is an additive subgroup
|
||
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := by
|
||
sorry
|
||
|
||
|
||
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry
|
||
|
||
|
||
def graded_submodule
|
||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u)
|
||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ )
|
||
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
|
||
sorry
|
||
|
||
|
||
end
|
||
|
||
|
||
|
||
|
||
|
||
|
||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||
instance Quotient_of_graded_is_graded
|
||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||
sorry
|
||
|
||
|
||
-- If A_0 is Artinian and local, then A is graded local
|
||
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := by
|
||
sorry
|
||
|
||
|
||
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
||
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||
: ∃ (c : List (Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))), c.Chain' (· < ·) ∧ ∀ M ∈ c, Ture := by
|
||
sorry
|
||
|
||
|
||
-- @[BH, 1.5.6 (b)(ii)]
|
||
-- An associated prime of a graded R-Mod M is graded
|
||
lemma Associated_prime_of_graded_is_graded
|
||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of _ i x}).annihilator)) := by
|
||
sorry
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
-- @[BH, 4.1.3] when d ≥ 1
|
||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||
[DirectSum.GCommRing 𝒜]
|
||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||
|
||
: PolyType hilb (d - 1) := by
|
||
sorry
|
||
|
||
|
||
-- (reduced version) [BH, 4.1.3] when d ≥ 1
|
||
-- If M is a finite graed R-Mod of dimension d ≥ 1, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
||
theorem Hilbert_polynomial_d_ge_1_reduced
|
||
(d : ℕ) (d1 : 1 ≤ d)
|
||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||
[DirectSum.GCommRing 𝒜]
|
||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||
: PolyType hilb (d - 1) := by
|
||
sorry
|
||
|
||
|
||
-- @[BH, 4.1.3] when d = 0
|
||
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
||
theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||
[DirectSum.GCommRing 𝒜]
|
||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||
sorry
|
||
|
||
|
||
-- (reduced version) [BH, 4.1.3] when d = 0
|
||
-- If M is a finite graed R-Mod of dimension zero, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
|
||
theorem Hilbert_polynomial_d_0_reduced
|
||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||
[DirectSum.GCommRing 𝒜]
|
||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||
sorry
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|