mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
156 lines
No EOL
5.3 KiB
Text
156 lines
No EOL
5.3 KiB
Text
import CommAlg.krull
|
||
|
||
section ChainLemma
|
||
variable {α β : Type _}
|
||
variable [LT α] [LT β] (s t : Set α)
|
||
|
||
namespace Set
|
||
open List
|
||
|
||
/-
|
||
Sorry for using aesop, but it doesn't take that long
|
||
-/
|
||
theorem append_mem_subchain_iff :
|
||
l ++ l' ∈ s.subchain ↔ l ∈ s.subchain ∧ l' ∈ s.subchain ∧ ∀ a ∈ l.getLast?, ∀ b ∈ l'.head?, a < b := by
|
||
simp [subchain, chain'_append]
|
||
aesop
|
||
|
||
end Set
|
||
end ChainLemma
|
||
|
||
variable {R : Type _} [CommRing R]
|
||
open Ideal Polynomial
|
||
|
||
namespace Polynomial
|
||
/-
|
||
The composition R → R[X] → R is the identity
|
||
-/
|
||
theorem coeff_C_eq : RingHom.comp constantCoeff C = RingHom.id R := by ext; simp
|
||
|
||
end Polynomial
|
||
|
||
/-
|
||
Given an ideal I in R, we define the ideal adjoin_x' I to be the kernel
|
||
of R[X] → R → R/I
|
||
-/
|
||
def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp constantCoeff
|
||
def adjoin_x' (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I)
|
||
def adjoin_x (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where
|
||
asIdeal := adjoin_x' I.asIdeal
|
||
IsPrime := RingHom.ker_isPrime _
|
||
|
||
@[simp]
|
||
lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by
|
||
ext x; simp [adj_x_map]
|
||
|
||
lemma adjoin_x_eq (I : Ideal R) : adjoin_x' I = I.map C ⊔ Ideal.span {X} := by
|
||
apply le_antisymm
|
||
. rintro p hp
|
||
have h : ∃ q r, p = C r + X * q := ⟨p.divX, p.coeff 0, p.divX_mul_X_add.symm.trans $ by ring⟩
|
||
obtain ⟨q, r, rfl⟩ := h
|
||
suffices : r ∈ I
|
||
. simp only [Submodule.mem_sup, Ideal.mem_span_singleton]
|
||
refine' ⟨C r, Ideal.mem_map_of_mem C this, X * q, ⟨q, rfl⟩, rfl⟩
|
||
rw [adjoin_x', adj_x_map, RingHom.mem_ker, RingHom.comp_apply] at hp
|
||
rw [constantCoeff_apply, coeff_add, coeff_C_zero, coeff_X_mul_zero, add_zero] at hp
|
||
rwa [←RingHom.mem_ker, Ideal.mk_ker] at hp
|
||
. rw [sup_le_iff]
|
||
constructor
|
||
. simp [adjoin_x', RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map]
|
||
. simp [span_le, adjoin_x', RingHom.mem_ker, adj_x_map]
|
||
|
||
/-
|
||
If I is prime in R, the pushforward I*R[X] is prime in R[X]
|
||
-/
|
||
def map_prime (I : PrimeSpectrum R) : PrimeSpectrum R[X] :=
|
||
⟨I.asIdeal.map C, isPrime_map_C_of_isPrime I.IsPrime⟩
|
||
|
||
/-
|
||
The pushforward map (Ideal R) → (Ideal R[X]) is injective
|
||
-/
|
||
lemma map_inj {I J : Ideal R} (h : I.map C = J.map C) : I = J := by
|
||
have H : map constantCoeff (I.map C) = map constantCoeff (J.map C) := by rw [h]
|
||
simp [Ideal.map_map, coeff_C_eq] at H
|
||
exact H
|
||
|
||
/-
|
||
The pushforward map (Ideal R) → (Ideal R[X]) is strictly monotone
|
||
-/
|
||
lemma map_strictmono {I J : Ideal R} (h : I < J) : I.map C < J.map C := by
|
||
rw [lt_iff_le_and_ne] at h ⊢
|
||
exact ⟨map_mono h.1, fun H => h.2 (map_inj H)⟩
|
||
|
||
lemma map_lt_adjoin_x (I : PrimeSpectrum R) : map_prime I < adjoin_x I := by
|
||
simp [adjoin_x, adjoin_x_eq]
|
||
show I.asIdeal.map C < I.asIdeal.map C ⊔ span {X}
|
||
simp [Ideal.span_le, mem_map_C_iff]
|
||
use 1
|
||
simp
|
||
rw [←Ideal.eq_top_iff_one]
|
||
exact I.IsPrime.ne_top'
|
||
|
||
lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x I) := by
|
||
suffices H : height I + (1 : ℕ) ≤ height (adjoin_x I) + (0 : ℕ)
|
||
. norm_cast at H; rw [add_zero] at H; exact H
|
||
rw [height, height, Set.chainHeight_add_le_chainHeight_add {J | J < I} _ 1 0]
|
||
intro l hl
|
||
use ((l.map map_prime) ++ [map_prime I])
|
||
refine' ⟨_, by simp⟩
|
||
. simp [Set.append_mem_subchain_iff]
|
||
refine' ⟨_, map_lt_adjoin_x I, fun a ha => _⟩
|
||
. refine' ⟨_, fun i hi => _⟩
|
||
. apply List.chain'_map_of_chain' map_prime (fun a b hab => map_strictmono hab) hl.1
|
||
. rw [List.mem_map] at hi
|
||
obtain ⟨a, ha, rfl⟩ := hi
|
||
calc map_prime a < map_prime I := by apply map_strictmono; apply hl.2; apply ha
|
||
_ < adjoin_x I := by apply map_lt_adjoin_x
|
||
. have H : ∃ b : PrimeSpectrum R, b ∈ l ∧ map_prime b = a
|
||
. have H2 : l ≠ []
|
||
. intro h
|
||
rw [h] at ha
|
||
tauto
|
||
use l.getLast H2
|
||
refine' ⟨List.getLast_mem H2, _⟩
|
||
have H3 : l.map map_prime ≠ []
|
||
. intro hl
|
||
apply H2
|
||
apply List.eq_nil_of_map_eq_nil hl
|
||
rw [List.getLast?_eq_getLast _ H3, Option.some_inj] at ha
|
||
simp [←ha, List.getLast_map _ H2]
|
||
obtain ⟨b, hb, rfl⟩ := H
|
||
apply map_strictmono
|
||
apply hl.2
|
||
exact hb
|
||
|
||
/-
|
||
dim R + 1 ≤ dim R[X]
|
||
-/
|
||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||
krullDim R + (1 : ℕ∞) ≤ krullDim R[X] := by
|
||
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
|
||
rw [hn]
|
||
change ↑(n + 1) ≤ krullDim R[X]
|
||
have := le_of_eq hn.symm
|
||
induction' n using ENat.recTopCoe with n
|
||
. change krullDim R = ⊤ at hn
|
||
change ⊤ ≤ krullDim R[X]
|
||
rw [krullDim_eq_top_iff] at hn
|
||
rw [top_le_iff, krullDim_eq_top_iff]
|
||
intro n
|
||
obtain ⟨I, hI⟩ := hn n
|
||
use adjoin_x I
|
||
calc n ≤ height I := hI
|
||
_ ≤ height I + 1 := le_self_add
|
||
_ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I
|
||
change n ≤ krullDim R at this
|
||
change (n + 1 : ℕ) ≤ krullDim R[X]
|
||
rw [le_krullDim_iff] at this ⊢
|
||
obtain ⟨I, hI⟩ := this
|
||
use adjoin_x I
|
||
apply WithBot.coe_mono
|
||
calc n + 1 ≤ height I + 1 := by
|
||
apply add_le_add_right
|
||
change ((n : ℕ∞) : WithBot ℕ∞) ≤ (height I) at hI
|
||
rw [WithBot.coe_le_coe] at hI
|
||
exact hI
|
||
_ ≤ height (adjoin_x I) := ht_adjoin_x_eq_ht_add_one I |