comm_alg/CommAlg/sayantan.lean

67 lines
2.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic
-- import Mathlib.Data.ENat.Lattice
-- import Mathlib.Order.OrderIsoNat
-- import Mathlib.Tactic.TFAE
namespace Ideal
-- def foo : List Nat := [1, 2, 3, 4, 5]
-- #check List.Chain'
-- example : List.Chain' (· < ·) foo := by
-- repeat { constructor; norm_num }
example (x : Nat) : List.Chain' (· < ·) [x] := by
constructor
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
variable {K : Type _} [Field K]
lemma dim_field_eq_zero : krullDim K = 0 := by
have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
constructor
· intro primeP
obtain T := eq_bot_or_top P
have : ¬P = := IsPrime.ne_top primeP
tauto
· intro botP
rw [botP]
exact bot_prime
unfold krullDim
have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by
intro P
unfold height
simp
by_contra spec
change _ ≠ _ at spec
rw [← Set.nonempty_iff_ne_empty] at spec
obtain ⟨J, JlP : J < P⟩ := spec
have P0 : IsPrime P.asIdeal := P.IsPrime
have J0 : IsPrime J.asIdeal := J.IsPrime
rw [prime_bot] at P0 J0
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
have JeqP : J = P := PrimeSpectrum.ext J P this
have JneqP : J ≠ P := ne_of_lt JlP
contradiction
simp [height_zero]