mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
228 lines
No EOL
7.6 KiB
Text
228 lines
No EOL
7.6 KiB
Text
import Mathlib.Order.KrullDimension
|
||
import Mathlib.Order.JordanHolder
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
import Mathlib.Order.Height
|
||
import CommAlg.krull
|
||
|
||
|
||
#check (p q : PrimeSpectrum _) → (p ≤ q)
|
||
#check Preorder (PrimeSpectrum _)
|
||
|
||
-- Dimension of a ring
|
||
#check krullDim (PrimeSpectrum _)
|
||
|
||
-- Length of a module
|
||
#check krullDim (Submodule _ _)
|
||
|
||
#check JordanHolderLattice
|
||
|
||
|
||
section Chains
|
||
|
||
variable {α : Type _} [Preorder α] (s : Set α)
|
||
|
||
def finFun_to_list {n : ℕ} : (Fin n → α) → List α := by sorry
|
||
|
||
def series_to_chain : StrictSeries s → s.subchain
|
||
| ⟨length, toFun, strictMono⟩ =>
|
||
⟨ finFun_to_list (fun x => toFun x),
|
||
sorry⟩
|
||
|
||
-- there should be a coercion from WithTop ℕ to WithBot (WithTop ℕ) but it doesn't seem to work
|
||
-- it looks like this might be because someone changed the instance from CoeCT to Coe during the port
|
||
-- actually it looks like we can coerce to WithBot (ℕ∞) fine
|
||
lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop ℕ)) = krullDim s := by
|
||
intro hs
|
||
unfold Set.chainHeight
|
||
unfold krullDim
|
||
have hKrullSome : ∃n, krullDim s = some n := by
|
||
|
||
sorry
|
||
-- norm_cast
|
||
sorry
|
||
|
||
end Chains
|
||
|
||
section Krull
|
||
|
||
variable (R : Type _) [CommRing R] (M : Type _) [AddCommGroup M] [Module R M]
|
||
|
||
open Ideal
|
||
|
||
-- chain of primes
|
||
#check height
|
||
|
||
lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry
|
||
|
||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||
rcases n with _ | n
|
||
. constructor <;> intro h <;> exfalso
|
||
. exact (not_le.mpr h) le_top
|
||
. -- change ∃c, _ ∧ _ ∧ ((List.length c : ℕ∞) = ⊤ + 1) at h
|
||
-- rw [WithTop.top_add] at h
|
||
tauto
|
||
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||
symm
|
||
show (n + 1 ≤ m ↔ _ )
|
||
apply ENat.add_one_le_iff
|
||
exact ENat.coe_ne_top _
|
||
rw [this]
|
||
unfold Ideal.height
|
||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||
-- have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n)
|
||
constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩
|
||
. --rw [and_assoc]
|
||
-- show _ ∧ _ ∧ _
|
||
--exact ⟨hc.1, _⟩
|
||
tauto
|
||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||
norm_cast at hc
|
||
tauto
|
||
|
||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||
show (_ < _) ↔ _
|
||
rw [WithBot.coe_lt_coe]
|
||
exact lt_height_iff' _
|
||
|
||
lemma height_le_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||
height 𝔭 ≤ n ↔ ∀ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := by
|
||
sorry
|
||
|
||
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||
use k
|
||
|
||
-- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||
-- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
||
-- sorry
|
||
|
||
-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||
-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
||
|
||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||
|
||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||
constructor
|
||
. contrapose
|
||
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||
. intro h
|
||
by_contra hneg
|
||
rw [not_isEmpty_iff] at hneg
|
||
rcases hneg with ⟨a, ha⟩
|
||
exact primeSpectrum_empty_of_subsingleton R ⟨a, ha⟩
|
||
|
||
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||
unfold Ideal.krullDim
|
||
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||
constructor <;> intro h
|
||
. rw [←not_nonempty_iff]
|
||
rintro ⟨a, ha⟩
|
||
specialize h ⟨a, ha⟩
|
||
tauto
|
||
. rw [h.forall_iff]
|
||
trivial
|
||
|
||
#check (sorry : False)
|
||
#check (sorryAx)
|
||
#check (4 : WithBot ℕ∞)
|
||
#check List.sum
|
||
#check (_ ∈ (_ : List _))
|
||
variable (α : Type )
|
||
#synth Membership α (List α)
|
||
#check bot_lt_iff_ne_bot
|
||
-- #check ((4 : ℕ∞) : WithBot (WithTop ℕ))
|
||
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
|
||
|
||
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
|
||
applies only to dimension zero rings and domains of dimension 1. -/
|
||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by
|
||
rw [krullDim_le_iff R 1]
|
||
-- unfold Ring.DimensionLEOne
|
||
intro H p
|
||
-- have Hp := H p.asIdeal
|
||
-- have Hp := fun h => (Hp h) p.IsPrime
|
||
apply le_of_not_gt
|
||
intro h
|
||
rcases ((lt_height_iff'' R).mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||
norm_cast at hc3
|
||
rw [List.chain'_iff_get] at hc1
|
||
specialize hc1 0 (by rw [hc3]; simp)
|
||
-- generalize hq0 : List.get _ _ = q0 at hc1
|
||
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||
-- have hq0 : q0 ∈ c := List.get_mem _ _ _
|
||
-- have hq1 : q1 ∈ c := List.get_mem _ _ _
|
||
specialize hc2 q1 (List.get_mem _ _ _)
|
||
-- have aa := (bot_le : (⊥ : Ideal R) ≤ q0.asIdeal)
|
||
change q0.asIdeal < q1.asIdeal at hc1
|
||
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||
-- change q1.asIdeal < p.asIdeal at hc2
|
||
apply IsPrime.ne_top p.IsPrime
|
||
apply (IsCoatom.lt_iff H.out).mp
|
||
exact hc2
|
||
--refine Iff.mp radical_eq_top (?_ (id (Eq.symm hc3)))
|
||
end Krull
|
||
|
||
section iSupWithBot
|
||
|
||
variable {α : Type _} [CompleteSemilatticeSup α] {I : Type _} (f : I → α)
|
||
|
||
#synth SupSet (WithBot ℕ∞)
|
||
|
||
protected lemma WithBot.iSup_ge_coe_iff {a : α} :
|
||
(a ≤ ⨆ i : I, (f i : WithBot α) ) ↔ ∃ i : I, f i ≥ a := by
|
||
rw [WithBot.coe_le_iff]
|
||
sorry
|
||
|
||
end iSupWithBot
|
||
|
||
section myGreatElab
|
||
open Lean Meta Elab
|
||
|
||
syntax (name := lhsStx) "lhs% " term:max : term
|
||
syntax (name := rhsStx) "rhs% " term:max : term
|
||
|
||
@[term_elab lhsStx, term_elab rhsStx]
|
||
def elabLhsStx : Term.TermElab := fun stx expectedType? =>
|
||
match stx with
|
||
| `(lhs% $t) => do
|
||
let (lhs, _, eq) ← mkExpected expectedType?
|
||
discard <| Term.elabTermEnsuringType t eq
|
||
return lhs
|
||
| `(rhs% $t) => do
|
||
let (_, rhs, eq) ← mkExpected expectedType?
|
||
discard <| Term.elabTermEnsuringType t eq
|
||
return rhs
|
||
| _ => throwUnsupportedSyntax
|
||
where
|
||
mkExpected expectedType? := do
|
||
let α ←
|
||
if let some expectedType := expectedType? then
|
||
pure expectedType
|
||
else
|
||
mkFreshTypeMVar
|
||
let lhs ← mkFreshExprMVar α
|
||
let rhs ← mkFreshExprMVar α
|
||
let u ← getLevel α
|
||
let eq := mkAppN (.const ``Eq [u]) #[α, lhs, rhs]
|
||
return (lhs, rhs, eq)
|
||
|
||
#check lhs% (add_comm 1 2)
|
||
#check rhs% (add_comm 1 2)
|
||
#check lhs% (add_comm _ _ : _ = 1 + 2)
|
||
|
||
example (x y : α) (h : x = y) : lhs% h = rhs% h := h
|
||
|
||
def lhsOf {α : Sort _} {x y : α} (h : x = y) : α := x
|
||
|
||
#check lhsOf (add_comm 1 2) |