mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
298 lines
11 KiB
Text
298 lines
11 KiB
Text
import Mathlib.RingTheory.Ideal.Basic
|
||
import Mathlib.RingTheory.Ideal.Operations
|
||
import Mathlib.RingTheory.JacobsonIdeal
|
||
import Mathlib.RingTheory.Noetherian
|
||
import Mathlib.Order.KrullDimension
|
||
import Mathlib.RingTheory.Artinian
|
||
import Mathlib.RingTheory.Ideal.Quotient
|
||
import Mathlib.RingTheory.Nilpotent
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian
|
||
import Mathlib.Data.Finite.Defs
|
||
import Mathlib.Order.Height
|
||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||
import Mathlib.RingTheory.Localization.AtPrime
|
||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||
import Mathlib.Algebra.Ring.Pi
|
||
import Mathlib.RingTheory.Finiteness
|
||
import Mathlib.Util.PiNotation
|
||
import CommAlg.krull
|
||
|
||
open PiNotation
|
||
|
||
namespace Ideal
|
||
|
||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||
|
||
-- noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||
|
||
-- noncomputable def krullDim (R : Type) [CommRing R] :
|
||
-- WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||
|
||
--variable {R}
|
||
|
||
-- Stacks Lemma 10.26.1 (Should already exists)
|
||
-- (1) The closure of a prime P is V(P)
|
||
-- (2) the irreducible closed subsets are V(P) for P prime
|
||
-- (3) the irreducible components are V(P) for P minimal prime
|
||
|
||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||
-- if every element is nilpotent
|
||
class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
|
||
h : ∀ x ∈ I, IsNilpotent x
|
||
#check Ideal.IsLocallyNilpotent
|
||
end Ideal
|
||
|
||
|
||
-- Repeats the definition of the length of a module by Monalisa
|
||
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||
|
||
-- change the definition of length of a module
|
||
namespace Module
|
||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||
end Module
|
||
|
||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||
example [IsNoetherianRing R] :
|
||
TopologicalSpace.NoetherianSpace (PrimeSpectrum R) :=
|
||
inferInstance
|
||
|
||
instance ring_Noetherian_of_spec_Noetherian
|
||
[TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] :
|
||
IsNoetherianRing R where
|
||
noetherian := by sorry
|
||
|
||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
|
||
constructor
|
||
intro RisNoetherian
|
||
sorry
|
||
sorry
|
||
-- how do I apply an instance to prove one direction?
|
||
|
||
|
||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||
-- Every closed subset of a noetherian space is a finite union
|
||
-- of irreducible closed subsets.
|
||
|
||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals.
|
||
-- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent
|
||
-- and nilpotent are the same for Noetherian rings
|
||
lemma containment_radical_power_containment :
|
||
IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : ℕ, J ^ n ≤ I := by
|
||
rintro ⟨RisNoetherian, containment⟩
|
||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||
specialize RisNoetherian (Ideal.radical I)
|
||
-- rcases RisNoetherian with ⟨S, Sgenerates⟩
|
||
have containment2 : ∃ n : ℕ, (Ideal.radical I) ^ n ≤ I := by
|
||
apply Ideal.exists_radical_pow_le_of_fg I RisNoetherian
|
||
cases' containment2 with n containment2'
|
||
have containment3 : J ^ n ≤ (Ideal.radical I) ^ n := by
|
||
apply Ideal.pow_mono containment
|
||
use n
|
||
apply le_trans containment3 containment2'
|
||
-- The above can be proven using the following quicker theorem that is in the wrong place.
|
||
-- Ideal.exists_pow_le_of_le_radical_of_fG
|
||
|
||
|
||
-- Stacks Lemma 10.52.5: R → S is a ring map. M is an S-mod.
|
||
-- Then length_R M ≥ length_S M.
|
||
-- Stacks Lemma 10.52.5': equality holds if R → S is surjective.
|
||
|
||
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||
-- the same as the dimension as a vector space over R/I,
|
||
-- lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||
-- : I • (⊤ : Submodule R M) = 0
|
||
-- → Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||
|
||
-- Does lean know that M/IM is a R/I module?
|
||
-- Use 10.52.5
|
||
|
||
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
|
||
lemma power_zero_finite_length [Ideal.IsMaximal I] (h₁ : Ideal.FG I) [Module.Finite R M]
|
||
(h₂ : (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0)) :
|
||
(∃ m : ℕ, Module.length R M ≤ m) := by sorry
|
||
-- intro IisFG IisMaximal MisFinite power
|
||
-- rcases power with ⟨n, npower⟩
|
||
-- how do I get a generating set?
|
||
|
||
open Finset
|
||
|
||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||
lemma Artinian_has_finite_max_ideal
|
||
[IsArtinianRing R] : Finite (MaximalSpectrum R) := by
|
||
by_contra infinite
|
||
simp only [not_finite_iff_infinite] at infinite
|
||
let m' : ℕ ↪ MaximalSpectrum R := Infinite.natEmbedding (MaximalSpectrum R)
|
||
have m'inj := m'.injective
|
||
let m'' : ℕ → Ideal R := fun n : ℕ ↦ ⨅ k ∈ range n, (m' k).asIdeal
|
||
-- let f : ℕ → MaximalSpectrum R := fun n : ℕ ↦ m' n
|
||
-- let F : (n : ℕ) → Fin n → MaximalSpectrum R := fun n k ↦ m' k
|
||
have DCC : ∃ n : ℕ, ∀ k : ℕ, n ≤ k → m'' n = m'' k := by
|
||
apply IsArtinian.monotone_stabilizes {
|
||
toFun := m''
|
||
monotone' := sorry
|
||
}
|
||
cases' DCC with n DCCn
|
||
specialize DCCn (n+1)
|
||
specialize DCCn (Nat.le_succ n)
|
||
have containment1 : m'' n < (m' (n + 1)).asIdeal := by sorry
|
||
have : ∀ (j : ℕ), (j ≠ n + 1) → ∃ x, x ∈ (m' j).asIdeal ∧ x ∉ (m' (n+1)).asIdeal := by
|
||
intro j jnotn
|
||
have notcontain : ¬ (m' j).asIdeal ≤ (m' (n+1)).asIdeal := by
|
||
-- apply Ideal.IsMaximal (m' j).asIdeal
|
||
sorry
|
||
sorry
|
||
sorry
|
||
-- have distinct : (m' j).asIdeal ≠ (m' (n+1)).asIdeal := by
|
||
-- intro h
|
||
-- apply Function.Injective.ne m'inj jnotn
|
||
-- exact MaximalSpectrum.ext _ _ h
|
||
-- simp
|
||
-- unfold
|
||
|
||
|
||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||
-- This is in mathlib: IsArtinianRing.isNilpotent_jacobson_bot
|
||
|
||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||
-- its maximal ideals. Also, all primes are maximal
|
||
abbrev Prod_of_localization :=
|
||
Π I : MaximalSpectrum R, Localization.AtPrime I.1
|
||
|
||
-- instance : CommRing (Prod_of_localization R) := by
|
||
-- unfold Prod_of_localization
|
||
-- infer_instance
|
||
|
||
def foo : Prod_of_localization R →+* R where
|
||
toFun := sorry
|
||
invFun := sorry
|
||
left_inv := sorry
|
||
right_inv := sorry
|
||
map_mul' := sorry
|
||
map_add' := sorry
|
||
|
||
|
||
def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
|
||
(h : Ideal.IsLocallyNilpotent (Ideal.jacobson (⊥ : Ideal R))) :
|
||
Prod_of_localization R ≃+* R := by sorry
|
||
|
||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||
lemma IsArtinian_iff_finite_length :
|
||
IsArtinianRing R ↔ (∃ n : ℕ, Module.length R R ≤ n) := by sorry
|
||
|
||
-- Lemma: if R has finite length as R-mod, then R is Noetherian
|
||
lemma finite_length_is_Noetherian :
|
||
(∃ n : ℕ, Module.length R R ≤ n) → IsNoetherianRing R := by sorry
|
||
|
||
-- Lemma: if R is Artinian then all the prime ideals are maximal
|
||
lemma primes_of_Artinian_are_maximal
|
||
[IsArtinianRing R] [Ideal.IsPrime I] : Ideal.IsMaximal I := by sorry
|
||
|
||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||
|
||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||
lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 ↔ IsArtinianRing R := by
|
||
constructor
|
||
sorry
|
||
intro RisArtinian
|
||
constructor
|
||
apply finite_length_is_Noetherian
|
||
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||
rw [Ideal.dim_le_zero_iff]
|
||
intro I
|
||
apply primes_of_Artinian_are_maximal
|
||
|
||
|
||
|
||
|
||
-- Trash bin
|
||
-- lemma Artinian_has_finite_max_ideal
|
||
-- [IsArtinianRing R] : Finite (MaximalSpectrum R) := by
|
||
-- by_contra infinite
|
||
-- simp only [not_finite_iff_infinite] at infinite
|
||
-- let m' : ℕ ↪ MaximalSpectrum R := Infinite.natEmbedding (MaximalSpectrum R)
|
||
-- have m'inj := m'.injective
|
||
-- let m'' : ℕ → Ideal R := fun n : ℕ ↦ ⨅ k ∈ range n, (m' k).asIdeal
|
||
-- let f : ℕ → Ideal R := fun n : ℕ ↦ (m' n).asIdeal
|
||
-- have DCC : ∃ n : ℕ, ∀ k : ℕ, n ≤ k → m'' n = m'' k := by
|
||
-- apply IsArtinian.monotone_stabilizes {
|
||
-- toFun := m''
|
||
-- monotone' := sorry
|
||
-- }
|
||
-- cases' DCC with n DCCn
|
||
-- specialize DCCn (n+1)
|
||
-- specialize DCCn (Nat.le_succ n)
|
||
-- let F : Fin (n + 1) → MaximalSpectrum R := fun k ↦ m' k
|
||
-- have comaximal : ∀ (i j : Fin (n + 1)), (i ≠ j) → (F i).asIdeal ⊔ (F j).asIdeal =
|
||
-- (⊤ : Ideal R) := by
|
||
-- intro i j distinct
|
||
-- apply Ideal.IsMaximal.coprime_of_ne
|
||
-- exact (F i).IsMaximal
|
||
-- exact (F j).IsMaximal
|
||
-- have : (F i) ≠ (F j) := by
|
||
-- apply Function.Injective.ne m'inj
|
||
-- contrapose! distinct
|
||
-- exact Fin.ext distinct
|
||
-- intro h
|
||
-- apply this
|
||
-- exact MaximalSpectrum.ext _ _ h
|
||
-- let CRT1 : (R ⧸ ⨅ (i : Fin (n + 1)), ((F i).asIdeal))
|
||
-- ≃+* ((i : Fin (n + 1)) → R ⧸ (F i).asIdeal) :=
|
||
-- Ideal.quotientInfRingEquivPiQuotient
|
||
-- (fun i ↦ (F i).asIdeal) comaximal
|
||
-- let CRT2 : (R ⧸ ⨅ (i : Fin (n + 1)), ((F i).asIdeal))
|
||
-- ≃+* ((i : Fin (n + 1)) → R ⧸ (F i).asIdeal) :=
|
||
-- Ideal.quotientInfRingEquivPiQuotient
|
||
-- (fun i ↦ (F i).asIdeal) comaximal
|
||
|
||
|
||
|
||
|
||
-- have comaximal : ∀ (n : ℕ) (i j : Fin n), (i ≠ j) → ((F n) i).asIdeal ⊔ ((F n) j).asIdeal =
|
||
-- (⊤ : Ideal R) := by
|
||
-- intro n i j distinct
|
||
-- apply Ideal.IsMaximal.coprime_of_ne
|
||
-- exact (F n i).IsMaximal
|
||
-- exact (F n j).IsMaximal
|
||
-- have : (F n i) ≠ (F n j) := by
|
||
-- apply Function.Injective.ne m'inj
|
||
-- contrapose! distinct
|
||
-- exact Fin.ext distinct
|
||
-- intro h
|
||
-- apply this
|
||
-- exact MaximalSpectrum.ext _ _ h
|
||
-- let CRT : (n : ℕ) → (R ⧸ ⨅ (i : Fin n), ((F n) i).asIdeal)
|
||
-- ≃+* ((i : Fin n) → R ⧸ ((F n) i).asIdeal) :=
|
||
-- fun n ↦ Ideal.quotientInfRingEquivPiQuotient
|
||
-- (fun i ↦ (F n i).asIdeal) (comaximal n)
|
||
-- have DCC : ∃ n : ℕ, ∀ k : ℕ, n ≤ k → m'' n = m'' k := by
|
||
-- apply IsArtinian.monotone_stabilizes {
|
||
-- toFun := m''
|
||
-- monotone' := sorry
|
||
-- }
|
||
-- cases' DCC with n DCCn
|
||
-- specialize DCCn (n+1)
|
||
-- specialize DCCn (Nat.le_succ n)
|
||
-- let CRT1 := CRT n
|
||
-- let CRT2 := CRT (n + 1)
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|