mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2025-01-13 15:23:47 -06:00
88 lines
3.8 KiB
Text
88 lines
3.8 KiB
Text
import Mathlib.RingTheory.Ideal.Basic
|
||
import Mathlib.Order.Height
|
||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||
import Mathlib.RingTheory.Ideal.Quotient
|
||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||
import Mathlib.RingTheory.Localization.AtPrime
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||
import Mathlib.Data.Set.Ncard
|
||
import CommAlg.krull
|
||
|
||
namespace Ideal
|
||
|
||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||
|
||
/--
|
||
-- noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||
-- noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||
|
||
-- lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||
-- lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||
-- lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||
|
||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||
|
||
-- lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||
-- krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||
|
||
-- lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
||
|
||
-- lemma primeIdeal_finite_height_of_noetherianRing [Nontrivial R] [IsNoetherianRing R]
|
||
-- (P: PrimeSpectrum R) : height P ≠ ⊤ := by
|
||
-- sorry
|
||
--/
|
||
|
||
lemma exist_elts_MinimalOver_of_primeIdeal_of_noetherianRing [Nontrivial R] [IsNoetherianRing R]
|
||
(P: PrimeSpectrum R) (h : height P < ⊤) :
|
||
∃S : Set R, Set.ncard s = height P ∧ P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S) := by
|
||
sorry
|
||
|
||
lemma dim_eq_dim_polynomial_add_one [h1: Nontrivial R] [IsNoetherianRing R] :
|
||
krullDim R + 1 = krullDim (Polynomial R) := by
|
||
rw [le_antisymm_iff]
|
||
constructor
|
||
· exact dim_le_dim_polynomial_add_one
|
||
· by_cases krullDim R = ⊤
|
||
calc
|
||
krullDim (Polynomial R) ≤ ⊤ := le_top
|
||
_ ≤ krullDim R := top_le_iff.mpr h
|
||
_ ≤ krullDim R + 1 := by
|
||
apply le_of_eq
|
||
rw [h]
|
||
rfl
|
||
have h:= Ne.lt_top h
|
||
unfold krullDim
|
||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞)
|
||
≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||
intro P
|
||
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
|
||
apply exists_le_maximal
|
||
apply IsPrime.ne_top
|
||
apply P.IsPrime
|
||
obtain ⟨M, maxM, PleM⟩ := this
|
||
let P' : PrimeSpectrum (Polynomial R) := PrimeSpectrum.mk M (IsMaximal.isPrime maxM)
|
||
have PleP' : P ≤ P' := PleM
|
||
have : height P ≤ height P' := height_le_of_le PleP'
|
||
simp only [WithBot.coe_le_coe]
|
||
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
|
||
-- Prime avoidance is called subset_union_prime
|
||
sorry
|
||
obtain ⟨I, h⟩ := this
|
||
use I
|
||
exact ge_trans h this
|
||
obtain ⟨I, IP⟩ := this
|
||
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||
exact ge_trans this IP
|
||
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1)
|
||
≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
||
apply iSup_le
|
||
apply this
|
||
simp only [iSup_le_iff]
|
||
intro P
|
||
exact ge_trans oneOut (htPBdd P)
|