mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
52 lines
2.6 KiB
Text
52 lines
2.6 KiB
Text
import Mathlib.RingTheory.Ideal.Basic
|
||
import Mathlib.Order.Height
|
||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||
import Mathlib.RingTheory.Ideal.Quotient
|
||
import Mathlib.RingTheory.Localization.AtPrime
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||
|
||
namespace Ideal
|
||
|
||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||
|
||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||
|
||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||
|
||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||
|
||
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
||
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
||
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
||
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
||
-- simp
|
||
|
||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||
krullDim R + 1 = krullDim (Polynomial R) := by
|
||
rw [le_antisymm_iff]
|
||
constructor
|
||
· exact dim_le_dim_polynomial_add_one
|
||
· unfold krullDim
|
||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||
intro P
|
||
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||
sorry
|
||
obtain ⟨I, IP⟩ := this
|
||
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||
apply ge_trans this IP
|
||
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
||
apply iSup_le
|
||
apply this
|
||
simp
|
||
intro P
|
||
exact ge_trans oneOut (htPBdd P)
|