mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
94 lines
3.6 KiB
Text
94 lines
3.6 KiB
Text
import CommAlg.krull
|
||
import Mathlib.RingTheory.Ideal.Operations
|
||
import Mathlib.Order.Height
|
||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||
|
||
namespace Ideal
|
||
|
||
private lemma singleton_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
|
||
unfold Set.chainHeight
|
||
simp only [iSup_le_iff, Nat.cast_le_one]
|
||
intro L h
|
||
unfold Set.subchain at h
|
||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
|
||
rcases L with (_ | ⟨a,L⟩)
|
||
. simp only [List.length_nil, zero_le]
|
||
rcases L with (_ | ⟨b,L⟩)
|
||
. simp only [List.length_singleton, le_refl]
|
||
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||
exact absurd h1 (lt_irrefl _)
|
||
|
||
/-- The ring of polynomials over a field has dimension one. -/
|
||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||
rw [le_antisymm_iff]
|
||
let X := @Polynomial.X K _
|
||
constructor
|
||
· unfold krullDim
|
||
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||
intro I
|
||
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||
by_cases I = ⊥
|
||
· rw [← height_bot_iff_bot] at h
|
||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||
rw [h]
|
||
exact bot_le
|
||
· push_neg at h
|
||
have : I.asIdeal ≠ ⊥ := by
|
||
by_contra a
|
||
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||
contradiction
|
||
have maxI := IsPrime.to_maximal_ideal this
|
||
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||
intro P
|
||
constructor
|
||
· intro H
|
||
simp only [Set.mem_setOf_eq] at H
|
||
by_contra x
|
||
push_neg at x
|
||
have : P.asIdeal ≠ ⊥ := by
|
||
by_contra a
|
||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
||
contradiction
|
||
have maxP := IsPrime.to_maximal_ideal this
|
||
have IneTop := IsMaximal.ne_top maxI
|
||
have : P ≤ I := le_of_lt H
|
||
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
||
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
||
have : P = I := PrimeSpectrum.ext P I this
|
||
replace H : P ≠ I := ne_of_lt H
|
||
contradiction
|
||
· intro pBot
|
||
simp only [Set.mem_setOf_eq, pBot]
|
||
exact lt_of_le_of_ne bot_le h.symm
|
||
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
|
||
unfold height
|
||
rw [sngletn]
|
||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||
exact singleton_chainHeight_one
|
||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||
· obtain ⟨I, h⟩ := this
|
||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||
exact le_trans h this
|
||
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||
have : IsPrime (span {X}) := by
|
||
refine (span_singleton_prime ?hp).mpr primeX
|
||
exact Polynomial.X_ne_zero
|
||
let P := PrimeSpectrum.mk (span {X}) this
|
||
unfold height
|
||
use P
|
||
have : ⊥ ∈ {J | J < P} := by
|
||
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
||
suffices : P.asIdeal ≠ ⊥
|
||
· by_contra x
|
||
rw [PrimeSpectrum.ext_iff] at x
|
||
contradiction
|
||
by_contra x
|
||
simp only [span_singleton_eq_bot] at x
|
||
have := @Polynomial.X_ne_zero K _ _
|
||
contradiction
|
||
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
|