comm_alg/CommAlg/grant3.lean
2023-07-11 04:41:48 +00:00

98 lines
No EOL
3.5 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Data.Nat.Lattice
import Mathlib.Data.ENat.Lattice
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.CompleteLattice
import Mathlib.Order.WithBot
import Mathlib.Order.Height
import CommAlg.StrictSeries
import Mathlib.Tactic.TFAE
noncomputable def chainLength (α : Type _) [LT α] : WithBot ℕ∞ := ⨆ (s : StrictSeries α), s.length
noncomputable def height {α : Type _} [LT α] (x : α) : ℕ∞ := ⨆ s ∈ {s : StrictSeries α | s.top = x}, s.length
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := chainLength (PrimeSpectrum R)
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := sorry
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := sorry
variable {α : Type _} [LT α]
lemma height_eq_chainHeight (p : α) : height p = Set.chainHeight {J : α | J < p} := sorry
lemma chainLength_eq_bot : chainLength α = ⊥ ↔ IsEmpty α := by
sorry
lemma chainLength_eq_sup_height : chainLength α = ⨆ p : α, (height p : WithBot ℕ∞) := by
cases' isEmpty_or_nonempty α
. simp [chainLength]
. show (⨆ (s : _), ((_ : ℕ∞) : WithBot ℕ∞)) = _
norm_cast
unfold height
rw [iSup_comm]
apply le_antisymm <;> simp [iSup_mono]
#synth (IsWellOrder (WithBot ℕ∞) (·<·))
#check le_iSup
theorem lt_height_TFAE (p : α) (n : ℕ∞) :
List.TFAE [n < height p, ∃ c : StrictSeries α, c.top = p ∧ c.length > n, ∃c : StrictSeries α, c.top = p ∧ c.length = n + 1] := by
cases' n using ENat.recTopCoe with n
. tfae_have 1 ↔ 2; simp
tfae_have 1 ↔ 3; simp
tfae_finish
. norm_cast
sorry
-- tfae_have 1 → 2
-- . sorry
-- tfae_have 2 → 3
-- . sorry
-- tfae_have 3 → 1
-- . sorry
-- tfae_finish
theorem lt_height_iff {p : α} {n : ℕ∞} :
n < height p ↔ ∃ c : StrictSeries α, c.top = p ∧ c.length = n + 1 :=
lt_height_TFAE p n |>.out 0 2
theorem le_height_iff {p : α} {n : } :
n ≤ height p ↔ ∃ c : StrictSeries α, c.top = p ∧ c.length = n :=
match n with
| 0 => ⟨fun _ => ⟨StrictSeries.ofElement p, by simp⟩, by simp⟩
| n + 1 => by
erw [(ENat.add_one_le_iff <| ENat.coe_ne_top _), lt_height_iff]
norm_cast
-- unfold height
-- constructor <;> intro h
-- .
-- -- cases' isEmpty_or_nonempty α
-- -- . exfalso; exact IsEmpty.false p
-- by_cases case : ∃ (c : StrictSeries α) (hc : c.top = p), n ≤ c.length
-- . sorry
-- -- generalize hj : (⨆ (_), (_ : ℕ∞)) = j at h
-- -- have : ∃ (c : StrictSeries α) (hc : c.top = p), n ≤ c.length := by
-- -- induction' j using ENat.recTopCoe with j
-- -- . simp at hj
-- -- sorry
-- -- . norm_cast at h
-- -- sorry
-- . push_neg at case
-- have : 0 < n := by
-- let c := StrictSeries.ofList [p] (List.cons_ne_nil _ _) (List.chain'_singleton p)
-- specialize case c (by rw [])
-- simp
-- sorry
-- sorry
-- . rcases h with ⟨c, hc⟩
-- exact (hc.2 ▸ le_iSup₂ (f := fun (x : StrictSeries α) _ => (x.length : ℕ∞)) c) hc.1
theorem lt_height_iff'' {p : α} {n : ℕ∞} :
n < height p ↔ ∃ c : StrictSeries α, c.top = p ∧ c.length = n + 1 := by
cases' n using ENat.recTopCoe with n
. simp
. erw [←(ENat.add_one_le_iff <| ENat.coe_ne_top _), le_height_iff]
-- show (n + 1 : ) ≤ (_ : ℕ∞) ↔ _
-- norm_cast
-- rw [le_height_iff]
norm_cast